我在R中有一个大型数据框,其中包含许多位置的每日降雨时间序列数据(每个位置均在其自己的列中)。我想知道每个月以及每年每个位置的降雨量小于或大于阈值的次数。
我的数据框很大,因此我在此处提供了示例数据:
Date_ex <- seq.Date(as.Date('2000-01-01'),as.Date('2005-01-31'),by = 1)
A <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
B <- sample(x = c(1, 2, 10), size = 1858, replace = TRUE)
C <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
D <- sample(x = c(1, 3, 4), size = 1858, replace = TRUE)
df <- data.frame(Date_ex, A, B, C, D)
我如何找出A,B,C和D中的值分别每月大于每年4的次数。
我认为我应该能够将其总结为两个新表。
这样的人(例如,忽略数字):
A B C D
2000-01 1 0 5 0
2000-02 2 16 25 0
2000-03 1 5 26 0
这样的一个例子(例如,忽略数字):
A B C D
2000 44 221 67 0
2001 67 231 4 132
2002 99 111 66 4
2003 33 45 45 4
我认为我应该为此使用dplyr?但是我不确定如何使日期生效。
答案 0 :(得分:2)
使用dplyr
和lubridate
软件包的解决方案。关键是创建Year
和Month
列,按这些列分组,然后使用summarise_all
汇总数据。
# Create the example data frame, set the seed for reproducibility
set.seed(199)
Date_ex <- seq.Date(as.Date('2000-01-01'),as.Date('2005-01-31'),by = 1)
A <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
B <- sample(x = c(1, 2, 10), size = 1858, replace = TRUE)
C <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
D <- sample(x = c(1, 3, 4), size = 1858, replace = TRUE)
df <- data.frame(Date_ex, A, B, C, D)
library(dplyr)
library(lubridate)
# Summarise for each month
df2 <- df %>%
mutate(Year = year(Date_ex), Month = month(Date_ex)) %>%
select(-Date_ex) %>%
group_by(Year, Month) %>%
summarise_all(funs(sum(. > 4))) %>%
ungroup()
df2
# # A tibble: 61 x 6
# Year Month A B C D
# <dbl> <dbl> <int> <int> <int> <int>
# 1 2000 1 13 8 13 0
# 2 2000 2 12 7 8 0
# 3 2000 3 7 9 9 0
# 4 2000 4 9 12 10 0
# 5 2000 5 11 12 8 0
# 6 2000 6 12 9 16 0
# 7 2000 7 10 11 10 0
# 8 2000 8 8 12 14 0
# 9 2000 9 12 12 12 0
# 10 2000 10 9 9 7 0
# # ... with 51 more rows
# Summarise for each year and month
df3 <- df %>%
mutate(Year = year(Date_ex)) %>%
select(-Date_ex) %>%
group_by(Year) %>%
summarise_all(funs(sum(. > 4)))
df3
# # A tibble: 6 x 5
# Year A B C D
# <dbl> <int> <int> <int> <int>
# 1 2000 120 119 125 0
# 2 2001 119 123 113 0
# 3 2002 135 122 105 0
# 4 2003 114 112 104 0
# 5 2004 115 125 124 0
# 6 2005 9 14 11 0
答案 1 :(得分:2)
以下是一些解决方案。
1)汇总。此解决方案仅使用基数R。新的Date
列是月初或年初的日期。
aggregate(df[-1] > 4, list(Date = as.Date(cut(df[[1]], "month"))), sum)
aggregate(df[-1] > 4, list(Date = as.Date(cut(df[[1]], "year"))), sum)
1a)使用Zoo中的yearmon
类和(3)中的toyear
,我们可以这样写:
library(zoo)
aggregate(df[-1] > 4, list(Date = as.yearmon(df[[1]])), sum)
aggregate(df[-1] > 4, list(Date = toyear(df[[1]])), sum)
2)rowum 这是另一个基本的R解决方案。年/月或年由行名称给出。
rowsum((df[-1] > 4) + 0, format(df[[1]], "%Y-%m"))
rowsum((df[-1] > 4) + 0, format(df[[1]], "%Y"))
2a)使用Zoo中的yearmon
类和(3)中的toyear
,我们可以这样写:
library(zoo)
rowsum((df[-1] > 4) + 0, as.yearmon(df[[1]]))
rowsum((df[-1] > 4) + 0, toyear(df[[1]]))
3)aggregate.zoo 转换为动物园对象并使用aggregate.zoo
。请注意,yearmon
类在内部表示年和月为年份,再加上0表示1月,1/12表示2月,2/12表示3月,依此类推,因此取整数部分即表示年份。
library(zoo)
z <- read.zoo(df)
aggregate(z > 4, as.yearmon, sum)
toyear <- function(x) as.integer(as.yearmon(x))
aggregate(z > 4, toyear, sum)
结果是一个动物园时间序列,在第一种情况下带有yearmon
索引,在第二种情况下带有整数索引。如果要使用数据帧,请使用fortify.zoo(ag)
,其中ag
是aggregate
的结果。
4)dplyr toyear
来自(3)。
library(dplyr)
library(zoo)
df %>%
group_by(YearMonth = as.yearmon(Date_ex)) %>%
summarize_all(funs(sum)) %>%
ungroup
df %>%
group_by(Year = toyear(Date_ex)) %>%
summarize_all(funs(sum)) %>%
ungroup
答案 2 :(得分:1)
Data.table丢失了,所以我要添加它。注释在代码中。我用set.seed(1)生成了样本。
library(data.table)
setDT(df)
# add year and month to df
df[, `:=`(month = month(Date_ex),
year = year(Date_ex))]
# monthly returns, remove date_ex
monthly_dt <- df[,lapply(.SD, function(x) sum(x > 4)), by = .(year, month), .SDcols = -("Date_ex")]
year month A B C D
1: 2000 1 10 10 11 0
2: 2000 2 10 11 8 0
3: 2000 3 11 11 11 0
4: 2000 4 10 11 8 0
5: 2000 5 7 10 8 0
6: 2000 6 9 6 7 0
.....
# yearly returns, remove Date_ex and month
yearly_dt <- df[,lapply(.SD, function(x) sum(x > 4)), by = .(year), .SDcols = -c("Date_ex", "month")]
year A B C D
1: 2000 114 118 113 0
2: 2001 127 129 120 0
3: 2002 122 108 126 0
4: 2003 123 128 125 0
5: 2004 123 132 131 0
6: 2005 14 15 15 0