我正在使用mlr包在R中构建分类任务,以使用验证集来调整我正在使用的超参数,这些参数之一是使用特征选择基于重要性的变量百分比(chi.square方法)
lrn = makeFilterWrapper(learner = "classif.xgboost", fw.method = "chi.squared")
params <- makeParamSet(
makeDiscreteParam("booster",values = c("gbtree","dart")),
makeDiscreteParam("nrounds", values = 1000, tunable = F),
makeDiscreteParam("eta", values = c(0.1,0.05,0.2)),
makeIntegerParam("max_depth",lower = 3L,upper = 10L),
makeNumericParam("min_child_weight",lower = 1L,upper = 10L),
makeNumericParam("subsample",lower = 0.5,upper = 1),
makeNumericParam("colsample_bytree",lower = 0.5,upper = 1),
makeDiscreteParam("fw.perc", values = seq(0.2, 1, 0.05)))
rdesc = makeResampleDesc("CV", iters = 5)
ctrl <- makeTuneControlRandom(maxit = 1L)
res = tuneParams(lrn, task = valTask2016, resampling = rdesc, par.set = params, control = ctrl)
我不确定是否需要在这里进行5倍交叉验证,但是变量res
为我提供了我需要的所有参数,包括fw.perc
可以修剪我的变量选择重要性降序。
我的问题是,如何才能使用这些参数再次使用重采样(这次使用Subsampling
),但是这次是在训练数据上?这就是我得到的:
rdesc = makeResampleDesc("Subsample", iters = 5, split = 0.8)
lrn = setHyperPars(makeLearner("classif.xgboost"), par.vals = res$x)
r = resample(lrn, trainTask2016, rdesc, measures = list(mmce, fpr, fnr, timetrain))
在这种情况下,valTask2016
是我用于参数验证的分类任务。我使用createDummyFeatures
进行XGBoost所需的一键编码。
这是我得到的错误:
setHyperPars2.Learner(learner,insert(par.vals,args))中的错误: classif.xgboost:设置参数fw.perc时没有可用的描述对象! 您是说这些超参数之一吗:Booster eta alpha
答案 0 :(得分:0)
我相信您会收到此错误的原因是,第二个学习者是一个“简单的” xgboost学习者,而不是像第一个学习者一样由过滤器包装的xgboost学习者(learnermakeFilterWrapper返回一个学习者)。
因此,您有两个选择:
我希望这是有道理的。
编辑:这对于使用泰坦尼克号数据集的第二个选项很有效:
library(mlr)
library(dplyr)
library(titanic)
sample <- sample.int(n = nrow(titanic_train), size = floor(.7*nrow(titanic_train)), replace = F)
train <- titanic_train[sample, ] %>% select(Pclass, Sex, Age, SibSp, Fare, Survived) %>% mutate(Sex = ifelse(Sex == 'male', 0, 1))
lrn = makeFilterWrapper(learner = "classif.xgboost", fw.method = "chi.squared")
params <- makeParamSet(
makeDiscreteParam("booster",values = c("gbtree","dart")),
makeDiscreteParam("nrounds", values = 1000, tunable = F),
makeDiscreteParam("eta", values = c(0.1,0.05,0.2)),
makeIntegerParam("max_depth",lower = 3L,upper = 10L),
makeNumericParam("min_child_weight",lower = 1L,upper = 10L),
makeNumericParam("subsample",lower = 0.5,upper = 1),
makeNumericParam("colsample_bytree",lower = 0.5,upper = 1),
makeDiscreteParam("fw.perc", values = seq(0.2, 1, 0.05)))
classif.task <- mlr::makeClassifTask(data = train,
target = "Survived",
positive = "1")
rdesc = makeResampleDesc("CV", iters = 3)
ctrl <- makeTuneControlRandom(maxit = 2L)
res = tuneParams(lrn, task = classif.task, resampling = rdesc, par.set = params, control = ctrl)
##########################
test <- titanic_train[-sample,] %>% select(Pclass, Sex, Age, SibSp, Fare, Survived) %>% mutate(Sex = ifelse(Sex == 'male', 0, 1))
lrn2 = setHyperPars(makeFilterWrapper(learner = "classif.xgboost", fw.method = "chi.squared"), par.vals = res$x)
classif.task2 <- mlr::makeClassifTask(data = test,
target = "Survived",
positive = "1")
rdesc = makeResampleDesc("CV", iters = 3)
r = resample(learner = lrn2, task = classif.task2, resampling = rdesc, show.info = T, models = TRUE)