使用大型数据框的行值-Pandas创建小型数据框

时间:2018-07-05 18:15:08

标签: python python-3.x pandas dataframe

我有一个从Excel文件中读取的pandas数据框。由于Excel文件的第1行具有重复值,例如245, 245, 245,因此我将其读取为pd.read_excel(file, 'myfile', header = None),因此可以防止熊猫创建标头245, 245.1, 245.2等。

这是我的df的样子:

    0             1      2            3                 4
0   245           245   245           867               867
1   Reddit        NaN   NaN           Facebook          NaN
2   ColumnNeeded  NaN   ColumnValue   ColumnNeeded      ColumnValue
3   RedditInsight NaN   C             FacbookInsights   A
4   RedditText    NaN   H             FacbookText       L

我需要这样的输出(needed_df

    ID      Company     ColumnNeeded    ColumnValue
0   245     Reddit      RedditInsight   C
1   245     Reddit      RedditText      H
2   867     Facebook    FacbookInsight  A
3   867     Facebook    FacbookText     L

不确定,如何在pandas中进行此操作。我尝试从df中获取第1行中的所有唯一值。

id_s = []
for i in df.iloc[0]:
    id_s.append(i)
print(set(id_s))

unique_ids的列表

unique_id = list(set(id_s))
print(unique_id )
>> [867,245]

然后我想遍历df's第1行,并在unique_id列表中找到所有匹配的值,然后将它们拆分为单独的小型数据帧。

我无法完成这项工作。我的想法是创建迷你数据帧mini df1,即:

    0             1     2            
0   245           245   245           
1   Reddit        NaN   NaN           
2   ColumnNeeded  NaN   ColumnValue   
3   RedditInsight NaN   C             
4   RedditText    NaN   H   

迷你df2:

    0                 1
0   867               867
1   Facebook          NaN
2   ColumnNeeded      ColumnValue
3   FacbookInsights   A
4   FacbookText       L

我正在考虑对这些小型数据框进行操作(可能使用函数,因此我可以将其应用于所有小型dfs),最后将它们附加到大数据框中。还是有其他想法或方法来获取我的输出数据帧?

1 个答案:

答案 0 :(得分:0)

您的DataFrame的创建如下所示:

import pandas as pd
import numpy as np

df = pd.DataFrame([[245,245,245,867,867], ['Reddit', np.nan, np.nan,'Facebook',np.nan], ['ColumnNeeded',np.nan, 'ColumnValue', 'ColumnNeeded','ColumnValue'],
                   ['RedditInsight', np.nan, 'C', 'FacebookInsights', 'A'], ['RedditText', np.nan, 'H', 'FacbookText', 'L']])

您的DataFrame如下所示:

               0      1            2                 3            4
0            245  245.0          245               867          867
1         Reddit    NaN          NaN          Facebook          NaN
2   ColumnNeeded    NaN  ColumnValue      ColumnNeeded  ColumnValue
3  RedditInsight    NaN            C  FacebookInsights            A
4     RedditText    NaN            H       FacbookText            L

现在是代码。

new_header = df.iloc[0] #Grab the first row for the header
df = df[1:] #Take the data less the header row
df.columns = new_header #Set the header row as the df header


#Drop the column with all NaNs
df = df.dropna(axis=1, how='all')
df = df.T #Transpose

#Must find a way to do this part programtically
#Manually changing the index currently

df.index = [245.0, 245.1, 867.0, 867.1] 

iPrev = ""

l1 = []
for i in df.index:

    indexNow = str(i)[:3]
    #print(indexNow)
    if iPrev == indexNow:

        #print(df.at[i, 3], df.at[i, 4])
        l2.append(df.at[i, 3])

        l3.append(df.at[i, 4])

        l1.append(l2)
        l1.append(l3)
        l2 = []
        l3 = []
    else:

        iPrev = indexNow

        l2 = [i, df.at[i, 1], df.at[i, 3]]
        l3 = [i, df.at[i, 1], df.at[i, 4]]
        #print(l2)

result = pd.DataFrame(l1, columns = ['ID','Company','ColumnNeeded','ColumnValue'])

print(result)   

给予

      ID   Company      ColumnNeeded ColumnValue
0  245.0    Reddit     RedditInsight           C
1  245.0    Reddit        RedditText           H
2  867.0  Facebook  FacebookInsights           A
3  867.0  Facebook       FacbookText           L