我有一个从Excel文件中读取的pandas
数据框。由于Excel文件的第1行具有重复值,例如245, 245, 245
,因此我将其读取为pd.read_excel(file, 'myfile', header = None)
,因此可以防止熊猫创建标头245, 245.1, 245.2
等。
这是我的df
的样子:
0 1 2 3 4
0 245 245 245 867 867
1 Reddit NaN NaN Facebook NaN
2 ColumnNeeded NaN ColumnValue ColumnNeeded ColumnValue
3 RedditInsight NaN C FacbookInsights A
4 RedditText NaN H FacbookText L
我需要这样的输出(needed_df
)
ID Company ColumnNeeded ColumnValue
0 245 Reddit RedditInsight C
1 245 Reddit RedditText H
2 867 Facebook FacbookInsight A
3 867 Facebook FacbookText L
不确定,如何在pandas
中进行此操作。我尝试从df
中获取第1行中的所有唯一值。
id_s = []
for i in df.iloc[0]:
id_s.append(i)
print(set(id_s))
unique_ids的列表
unique_id = list(set(id_s))
print(unique_id )
>> [867,245]
然后我想遍历df's
第1行,并在unique_id
列表中找到所有匹配的值,然后将它们拆分为单独的小型数据帧。
我无法完成这项工作。我的想法是创建迷你数据帧mini df1,即:
0 1 2
0 245 245 245
1 Reddit NaN NaN
2 ColumnNeeded NaN ColumnValue
3 RedditInsight NaN C
4 RedditText NaN H
迷你df2:
0 1
0 867 867
1 Facebook NaN
2 ColumnNeeded ColumnValue
3 FacbookInsights A
4 FacbookText L
我正在考虑对这些小型数据框进行操作(可能使用函数,因此我可以将其应用于所有小型dfs),最后将它们附加到大数据框中。还是有其他想法或方法来获取我的输出数据帧?
答案 0 :(得分:0)
您的DataFrame的创建如下所示:
import pandas as pd
import numpy as np
df = pd.DataFrame([[245,245,245,867,867], ['Reddit', np.nan, np.nan,'Facebook',np.nan], ['ColumnNeeded',np.nan, 'ColumnValue', 'ColumnNeeded','ColumnValue'],
['RedditInsight', np.nan, 'C', 'FacebookInsights', 'A'], ['RedditText', np.nan, 'H', 'FacbookText', 'L']])
您的DataFrame如下所示:
0 1 2 3 4
0 245 245.0 245 867 867
1 Reddit NaN NaN Facebook NaN
2 ColumnNeeded NaN ColumnValue ColumnNeeded ColumnValue
3 RedditInsight NaN C FacebookInsights A
4 RedditText NaN H FacbookText L
现在是代码。
new_header = df.iloc[0] #Grab the first row for the header
df = df[1:] #Take the data less the header row
df.columns = new_header #Set the header row as the df header
#Drop the column with all NaNs
df = df.dropna(axis=1, how='all')
df = df.T #Transpose
#Must find a way to do this part programtically
#Manually changing the index currently
df.index = [245.0, 245.1, 867.0, 867.1]
iPrev = ""
l1 = []
for i in df.index:
indexNow = str(i)[:3]
#print(indexNow)
if iPrev == indexNow:
#print(df.at[i, 3], df.at[i, 4])
l2.append(df.at[i, 3])
l3.append(df.at[i, 4])
l1.append(l2)
l1.append(l3)
l2 = []
l3 = []
else:
iPrev = indexNow
l2 = [i, df.at[i, 1], df.at[i, 3]]
l3 = [i, df.at[i, 1], df.at[i, 4]]
#print(l2)
result = pd.DataFrame(l1, columns = ['ID','Company','ColumnNeeded','ColumnValue'])
print(result)
给予
ID Company ColumnNeeded ColumnValue
0 245.0 Reddit RedditInsight C
1 245.0 Reddit RedditText H
2 867.0 Facebook FacebookInsights A
3 867.0 Facebook FacbookText L