我有一个Spark Apps日志文件集合,我希望将每个文件的应用程序名称,提交时间,完成时间和可累积量度指标添加为一个CSV文件中的一行。使用SPARK / SCALA 编辑: 对不起,但是一个Spark应用程序日志文件太大,无法放入这里,而且太复杂了,因此每个工作都会重复更新一些指标,因此我需要所有这些指标的总和,而最后一个不是更新的,这里我一直尝试着现在
import org.apache.log4j._
import org.apache.spark.sql._
object LogToCSV {
val Logs= "SparkAppName, SubmissionTime, CompletionTime,ExecutorDeserializeCpuTime,ResultSize,ShuffleReadRemoteBytesRead, ShuffleReadFetchWaitTime,MemoryBytesSpilled,ShuffleReadLocalBytesRead,ExecutorDeserializeTime,PeakExecutionMemory,ExecutorCpuTime, ShuffleReadLocalBlocksFetched,JVMGCTime,ShuffleReadRemoteBytesReadToDisk,ShuffleReadRecordsRead,DiskBytesSpilled,ExecutorRunTime,ShuffleReadRemoteBlocksFetched,Result"
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val ss = SparkSession
.builder
.appName("SparkSQLDFjoin")
.master("local[*]")
.getOrCreate()
import ss.implicits._
ScalaWriter.Writer.Write(Logs, "Results.csv")
val Dir = ss.sparkContext.wholeTextFiles("/home/rudaini/Desktop/Thesis/Results/Results/Tesx/*")
println(Dir.count())
Dir.foreach(F =>{
var SparkAppName = ""
var SubmissionTime: Double = 0
var CompletionTime: Double = 0
var ExecutorDeserializeCpuTime: Double = 0
var ResultSize = ""
var ShuffleReadRemoteBytesRead = ""
var ShuffleReadFetchWaitTime = ""
var MemoryBytesSpilled = ""
var ShuffleReadLocalBytesRead = ""
var ExecutorDeserializeTime = ""
var PeakExecutionMemory = ""
var ExecutorCpuTime = ""
var ShuffleReadLocalBlocksFetched = ""
var JVMGCTime = ""
var ShuffleReadRemoteBytesReadToDisk = ""
var ShuffleReadRecordsRead = ""
var DiskBytesSpilled = ""
var ExecutorRunTime = ""
var ShuffleReadRemoteBlocksFetched = ""
var Result = ""
F.toString().split("\n").foreach(L =>{
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("ApplicationStart")){
SubmissionTime = L.substring(L.indexOf("Timestamp")+11,
L.indexOf(",\"User\":\"")).toDouble}
if(L.contains("ApplicationEnd")){
CompletionTime = L.substring(L.indexOf("Timestamp")+11,L.indexOf("Timestamp")+24).toDouble}
if(L.contains("SparkSubmit.scala")){
ExecutorDeserializeCpuTime = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")).toDouble}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
if(L.contains("spark.app.name")){
SparkAppName = L.substring(L.indexOf("app.name")+11,
L.indexOf("spark.scheduler")-3)}
})
val LineX = SparkAppName +","+ SubmissionTime +","+ CompletionTime +","+ ExecutorDeserializeCpuTime +","+ ResultSize +","+ ShuffleReadRemoteBytesRead +","+ ShuffleReadFetchWaitTime +","+ MemoryBytesSpilled +","+
ShuffleReadLocalBytesRead +","+ ExecutorDeserializeTime +","+ PeakExecutionMemory +","+ ExecutorCpuTime +","+
ShuffleReadLocalBlocksFetched +","+ JVMGCTime +","+ ShuffleReadRemoteBytesReadToDisk +","+
ShuffleReadRecordsRead +","+ DiskBytesSpilled +","+ ExecutorRunTime +","+ ShuffleReadRemoteBlocksFetched +","+
Result
ScalaWriter.Writer.Write(LineX, "Results.csv")
})
ss.stop()
}
}
我还没有完成,但是经过更多修改后效果更好
答案 0 :(得分:0)
我对您的问题有所了解,根据我的理解,我正在回答。希望您可以进一步整理问题,并可能会详细回答您的问题。
//define all dataframes globally
var df1: DataFrame = _
var df2: DataFrame = _
var df3: DataFrame = _
// define main function
//initialize spark session
//creates a list of all files in a directory
def getListOfFiles(dir: String):List[File] =
{
val path = new File("/path/to/directory/")
if (path.exists && path.isDirectory)
{
path.listFiles.filter(_.isFile).toList
}
else
{
List[File]()
}
}
val files = getListOfFiles("/path/to/directory/")
val input = ""
for (input <- files)
{
// code to extract log file data (I can help you further if you will explain your problem further)
// load your log file data into a dataframe
import spark.implicits._
if(input == files(0))
{
df1 = Seq(
(App Name.value, Submission Time.value, Completion Time.value, Accumulables metrics.value)
).toDF("App Name", "Submission Time", "Completion Time", "Accumulables metrics")
}
else
{
df2 = Seq(
(App Name.value, Submission Time.value, Completion Time.value, Accumulables metrics.value)
).toDF("App Name", "Submission Time", "Completion Time", "Accumulables metrics")
df3 = trainingDF.union(df2)
df1 = df3
}
}
// import dataframe to .csv file
df1.coalesce(1).write
.option("header", "true")
.csv("path/to/directory/file_name.csv")