我正在阅读下面的json结构
{"response":
{"GDUEACWF":
{"2018-06-01":
[{"groupwide_market":"Developed Markets",
"weights":0.8794132316432903},
{"groupwide_market":"Developed Markets",
"weights":0.8794132316432903}],
"2018-06-02":
[{"groupwide_market":"Developed Markets",
"weights":0.8794132316432903},
{"groupwide_market":"Developed Markets",
"weights":0.8794132316432903}]}}}
,然后尝试将其展平为以下格式的Pandas数据框。
|data_date |groupwide_market |weights
|2018-06-01 |Developed Markets |0.08794132316432903
我试图通过使用以下代码遍历每对k,v对中的每个列表来做到这一点。它确实可以工作,但是它也非常慢。 10万行数据需要30多分钟才能生成。
df = pd.DataFrame()
#concatenating each line of the list within each dict cell
for k1,v1 in data['response'][mnemonic].items():
for ele in v1:
df_temp = pd.concat({k2: pd.Series(v2) for k2, v2 in ele.items()}).transpose()
df_temp['data_date'] = k1
df = df.append(df_temp,ignore_index=True)
df.columns = [x[0] for x in df.columns]
我可以知道是否有更有效的方法吗?尝试阅读json_normalize的文档和示例,但无法弄清楚在这种情况下是否适用。
提前谢谢!