我正在尝试从Kaggle解决《泰坦尼克号》生存计划。这是我真正学习机器学习的第一步。我在性别列导致错误的地方遇到了问题。堆栈跟踪显示could not convert string to float: 'female'
。你们是怎么遇到这个问题的?我不想要解决方案。我只想要一种解决此问题的实用方法,因为我确实需要性别列来构建模型。
这是我的代码:
import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
train_path = "C:\\Users\\Omar\\Downloads\\Titanic Data\\train.csv"
train_data = pd.read_csv(train_path)
columns_of_interest = ['Survived','Pclass', 'Sex', 'Age']
filtered_titanic_data = train_data.dropna(axis=0)
x = filtered_titanic_data[columns_of_interest]
y = filtered_titanic_data.Survived
train_x, val_x, train_y, val_y = train_test_split(x, y, random_state=0)
titanic_model = DecisionTreeRegressor()
titanic_model.fit(train_x, train_y)
val_predictions = titanic_model.predict(val_x)
print(filtered_titanic_data)
答案 0 :(得分:8)
有几种解决方法,这取决于您要寻找的内容:
或
0
或1
。 在许多机器学习应用程序中,因素最好作为虚拟代码来处理。
请注意,在2级类别的情况下,根据以下概述的方法编码为数字基本上等同于伪编码:所有非级别0
的值都必须为级别{{1} }。实际上,在下面给出的伪代码示例中,存在冗余信息,因为我为2个类中的每个类提供了自己的列。只是为了说明概念。通常,一个人只会创建1
列,其中n-1
是级别数,而隐含的级别是隐含的( ie 为n
创建一列,并且所有Female
的值都隐含为0
)。
方法1:pd.factorize
Male
是一种简单,快速的数字编码方式:
例如,如果您的列pd.factorize
如下所示:
gender
另一种方法是使用>>> df
gender
0 Female
1 Male
2 Male
3 Male
4 Female
5 Female
6 Male
7 Female
8 Female
9 Female
df['gender_factor'] = pd.factorize(df.gender)[0]
>>> df
gender gender_factor
0 Female 0
1 Male 1
2 Male 1
3 Male 1
4 Female 0
5 Female 0
6 Male 1
7 Female 0
8 Female 0
9 Female 0
dtype:
category
这将导致相同的输出
方法3 sklearn.preprocessing.LabelEncoder()
此方法具有一些优点,例如易于向后转换:
df['gender_factor'] = df['gender'].astype('category').cat.codes
方法1:pd.get_dummies
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
# Transform the gender column
df['gender_factor'] = le.fit_transform(df.gender)
>>> df
gender gender_factor
0 Female 0
1 Male 1
2 Male 1
3 Male 1
4 Female 0
5 Female 0
6 Male 1
7 Female 0
8 Female 0
9 Female 0
# Easy to back transform:
df['gender_factor'] = le.inverse_transform(df.gender_factor)
>>> df
gender gender_factor
0 Female Female
1 Male Male
2 Male Male
3 Male Male
4 Female Female
5 Female Female
6 Male Male
7 Female Female
8 Female Female
9 Female Female
请注意,如果您想省略一列以获得非冗余的伪代码(请参阅本答案开头的注释),则可以使用:
df.join(pd.get_dummies(df.gender))
gender Female Male
0 Female 1 0
1 Male 0 1
2 Male 0 1
3 Male 0 1
4 Female 1 0
5 Female 1 0
6 Male 0 1
7 Female 1 0
8 Female 1 0
9 Female 1 0