我有98,000个美国家庭街道地址,我需要按照“步行”顺序进行排序,即按照您步行的顺序列出,沿着街道的一侧,然后过马路然后向后走。
import pandas as pd
df = pd.read_excel('c:pdsort.xlsx')
# add boolean column for even or odd on number column
is_even = df.loc[:,'number'] % 2 == 0
df.loc[:, 'even'] = is_even
# group and then sort by number
df.groupby(['town','street','even']).apply(lambda x: x.sort_values('number'))
# sort odd numbers ascending and even numbers descending
所需的df结果,对奇数的街道编号进行升序排序,然后切换为偶数的降序排序。 [抱歉,第一个stackoverflow问题,尚不具备复制Jupyter笔记本图像的条件]
4列:数字,街道,城镇,偶数
'number'列的期望结果: 1231 1233 1235 1237 1239 1238 1236 1234 1232 1230
答案 0 :(得分:1)
使用numpy.lexsort
,您可以定义要排序的序列序列。来自@smj的数据。
设置
import pandas as pd
import numpy as np
number_list = list(range(1, 11))
df = pd.DataFrame({'town': sorted(['Springfield', 'Shelbyville'] * 10),
'street': sorted(['Evergreen Terrace', 'Main Street'] * 10),
'number': number_list + number_list})
解决方案
在订购时要小心。 np.lexsort
从序列的最后一个元素开始工作;例如s1
的排序优先级最高,s4
的排序优先级最低。
s1 = df['town']
s2 = df['street']
s3 = ~df['number']%2 # i.e. "is odd"
s4 = np.where(s3, -df['number'], df['number']) # i.e. "negate if odd"
res = df.iloc[np.lexsort((s4, s3, s2, s1))]
结果
print(res)
town street number
0 Shelbyville Evergreen Terrace 1
2 Shelbyville Evergreen Terrace 3
4 Shelbyville Evergreen Terrace 5
6 Shelbyville Evergreen Terrace 7
8 Shelbyville Evergreen Terrace 9
9 Shelbyville Evergreen Terrace 10
7 Shelbyville Evergreen Terrace 8
5 Shelbyville Evergreen Terrace 6
3 Shelbyville Evergreen Terrace 4
1 Shelbyville Evergreen Terrace 2
10 Springfield Main Street 1
12 Springfield Main Street 3
14 Springfield Main Street 5
16 Springfield Main Street 7
18 Springfield Main Street 9
19 Springfield Main Street 10
17 Springfield Main Street 8
15 Springfield Main Street 6
13 Springfield Main Street 4
11 Springfield Main Street 2
答案 1 :(得分:0)
如果我对您的理解正确,这是我的尝试,我敢肯定这可以通过lambda函数完成,但它有助于以冗长的方式阐明逻辑:)
import pandas as pd
import numpy as np
number_list = list(range(1, 11))
data = pd.DataFrame(
{
'town': sorted(['Springfield', 'Shelbyville'] * 10),
'street': sorted(['Evergreen Terrace', 'Main Street'] * 10),
'number': number_list + number_list
}
)
data['is_even'] = data['number'] % 2 == 0
final = pd.DataFrame()
for key, data_group in data.groupby(['town', 'street', 'is_even']):
if key[2] == True:
final = final.append(data_group.sort_values('number', ascending = False))
else:
final = final.append(data_group.sort_values('number'))
final.drop('is_even', axis = 1, inplace = True)
final
礼物: