我在时间序列数据上实现了keras seq2seq模型。我认为这不是编码问题,但可以在这里找到代码(向下滚动查看帖子)或查看此处模型仍然可以对远离训练数据的数据提供良好的结果。为什么会这样? 我已经使用了不同的隐藏单位大小,时期,批量大小和时间步长参数,但我训练的范围为-0.2到0.2,并且没想到模型可以预测值,直到-0.8到0.8后退,这正在发生。因此,它不仅可以从数据中推广,更可以预测,这不应该发生。
我试过这个Seq2Seq:
num_encoder_tokens = 1
num_decoder_tokens = 1
encoder_seq_length = None
decoder_seq_length = None
batch_size = #100
epochs = #1
hidden_units= #30
timesteps= #20
#Input Data
input_seqs=train #data with sliding window, shape(None,20,1)
target_seqs=reversed_train #first reversed than sliding window added
with same shape as above
#define training encoder
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(hidden_units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
#define training decoder
decoder_inputs = Input(shape=(None,num_decoder_tokens))
decoder_lstm = LSTM(hidden_units, return_sequences=True,
return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_encoder_tokens, activation='tanh')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#training
model.compile(optimizer='adam', loss='mse')
model.fit([input_seqs, target_seqs], target_seqs,batch_size=batch_size,
epochs=epochs,validation_split=0.2)
#Testdata
target_seqs=test # different data as target with same shape
#define inference encoder
encoder_model = Model(encoder_inputs, encoder_states)
#define inference decoder
decoder_state_input_h = Input(shape=(hidden_units,))
decoder_state_input_c = Input(shape=(hidden_units,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs,
initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
#Initalize states for decoder
states_values = encoder_model.predict(input_seqs)
#empty target
target_seq = np.zeros((1, 1, num_decoder_tokens))
#predict
output=list()
for t in range(timesteps):
output_tokens, h, c = decoder_model.predict([target_seqs] + states_values)
output.append(output_tokens[0,0,:])
states_values = [h,c]
target_seq = output_tokens
这个更简单的模型有或没有repeatvector不会消磨,我也会遇到同样的问题:
from keras.models import Sequential, Model
from keras.layers import LSTM, RepeatVector
model = Sequential()
model.add(LSTM(40, input_shape=(timesteps, n_features)))
model.add(RepeatVector(timesteps))
model.add(LSTM(40, return_sequences=True))
model.add(Dense(1, activation='tanh'))
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
history=model.fit(train, train, epochs=200, shuffle=False)