我正在绘制与geom_point()相同的数据,并将其绘制为geom_boxplot(),但我的箱形图的宽度似乎已关闭。最大的x是292,但是相应的框小于285.我怎样才能得到正确的尺寸?
以下是我的数据的最小示例:
x = data.frame(cluster = c("c1","c2","c3","c4","c5","c6"),
elements = c(292,277,170,160,153,141),
divergence = c(0.08344564,0.12130600,0.05564219,0.12826086,0.05386341,0.09620389))
x.160 = x[x$elements >= 160,]
x.160$Size = "160+"
x.60 = x[x$elements >= 60 & x$elements < 160,]
x.60$Size = "60-160"
binnedX = rbind(x.60,x.160)
p1a = ggplot(data = binnedX, aes(x = elements, y = divergence, group = Size))+
geom_hline(yintercept = mean(binnedX$divergence), color = "black", linetype=2)+
geom_point(aes(color = Size))+
scale_x_continuous(breaks = c(seq(0,300,15))) +
scale_y_continuous(breaks = seq(0.00,0.25,0.05))+
scale_color_brewer(palette = "Spectral") +
ggtitle("element sequence divergence by cluster [clustalO, 100bp]") +
labs(x="Elements per cluster", y="Divergence")+
theme_linedraw(base_size = 18)+
theme(plot.title = element_text(hjust = 0.5),
axis.title.x = element_text(margin = margin(15,15,15,15,"pt")),
axis.title.y = element_text(margin = margin(15,15,15,15,"pt")))
p2a = ggplot(data = binnedX, aes(x = elements, y = divergence, group = Size))+
geom_hline(yintercept = mean(binnedX$divergence), color = "Red", linetype=2)+
geom_boxplot(aes(fill = Size)) +
scale_x_continuous(breaks = c(seq(0,300,15)))+
scale_y_continuous(breaks = seq(0.00,0.25,0.05))+
scale_fill_brewer(palette = "Spectral") +
labs(x="Elements per cluster", y="Divergence")+
theme_linedraw(base_size = 18)+
theme(plot.title = element_text(hjust = 0.5),
axis.title.x = element_text(margin = margin(15,15,15,15,"pt")),
axis.title.y = element_text(margin = margin(15,15,15,15,"pt")),
axis.text.x = element_text(angle=0))
multiplot(p1a,p2a)
答案 0 :(得分:2)
当我们按组创建箱形图时,每个箱的宽度被硬编码为组数据范围的90%。我们可以从StatBoxplot中的compute_group()
函数中看到这一点:
# reproducing lines 87-88 of stat-boxplot.r
if (length(unique(data$x)) > 1)
width <- diff(range(data$x)) * 0.9
我们可以通过基于compute_group()
定义修改后的StatBoxplot$compute_group
函数来覆盖此问题:
modified.function <- function(data, scales, width = NULL, na.rm = FALSE, coef = 1.5) {
qs <- c(0, 0.25, 0.5, 0.75, 1)
if (!is.null(data$weight)) {
mod <- quantreg::rq(y ~ 1, weights = weight, data = data, tau = qs)
stats <- as.numeric(stats::coef(mod))
}
else {
stats <- as.numeric(stats::quantile(data$y, qs))
}
names(stats) <- c("ymin", "lower", "middle", "upper", "ymax")
iqr <- diff(stats[c(2, 4)])
outliers <- data$y < (stats[2] - coef * iqr) | data$y > (stats[4] + coef * iqr)
if (any(outliers)) {
stats[c(1, 5)] <- range(c(stats[2:4], data$y[!outliers]), na.rm = TRUE)
}
if (length(unique(data$x)) > 1)
width <- diff(range(data$x)) * 1 # instead of 0.9
df <- as.data.frame(as.list(stats))
df$outliers <- list(data$y[outliers])
if (is.null(data$weight)) {
n <- sum(!is.na(data$y))
}
else {
n <- sum(data$weight[!is.na(data$y) & !is.na(data$weight)])
}
df$notchupper <- df$middle + 1.58 * iqr/sqrt(n)
df$notchlower <- df$middle - 1.58 * iqr/sqrt(n)
df$x <- if (is.factor(data$x))
data$x[1]
else mean(range(data$x))
df$width <- width
df$relvarwidth <- sqrt(n)
df}
基于StatBoxplot
创建一个修改后的统计信息类,以及基于stat_boxplot
为其创建相应的图层函数:
StatBoxplot2 <- ggproto(`_class` = "StatBoxplot2", # class name
`_inherit` = StatBoxplot, # inherit from StatBoxplot
compute_group = modified.function) # override its compute_group function
stat_boxplot2 <- function(mapping = NULL, data = NULL, geom = "boxplot", position = "dodge2", ...,
coef = 1.5, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE){
layer(data = data, mapping = mapping,
stat = StatBoxplot2, # use StatBoxplot2 rather than StatBoxplot
geom = geom, position = position,
show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, coef = coef, ...))
}
比较使用默认stat = "boxplot"
的箱形图和使用修改后的stat = "boxplot2"
的箱形图:
# Base plot with vertical dashed lines to indicate each point's position, & theme_classic for a
# less cluttered background. I also changed the palette as Spectral's yellow was really hard to see.
p <- ggplot(data = binnedX,
aes(x = elements, y = divergence, fill = Size))+
geom_point(aes(color = Size), size = 3) +
geom_vline(aes(xintercept = elements), linetype = "dashed") +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1", guide = FALSE) +
theme_classic()
gridExtra::grid.arrange(p + ggtitle("original") + geom_boxplot(alpha = 0.5),
p + ggtitle("modified") + geom_boxplot(alpha = 0.5, stat = "boxplot2"))