我有一个包含两列[Name,In.cl]的数据框。我想分组名称,但它基于连续发生。例如,请考虑以下DataFrame,
在DF下生成的代码:
df=pd.DataFrame({'Name':['A','B','B','A','A','B','C','C','C','B','C'],'In.Cl':[2,1,5,2,4,2,3,1,8,5,7]})
输入:
In.Cl Name
0 2 A
1 1 B
2 5 B
3 2 A
4 4 A
5 2 B
6 3 C
7 1 C
8 8 C
9 5 B
10 7 C
我想将连续重复的行分组。示例组[B](1,2),[A](3,4),[C](6,8)等,并在In.cl列中执行求和运算。
预期产出:
In.Cl Name col1 col2
0 2 A A(1) 2
1 1 B B(2) 6
2 5 B B(2) 6
3 2 A A(2) 6
4 4 A A(2) 6
5 2 B B(1) 2
6 3 C C(3) 12
7 1 C C(3) 12
8 8 C C(3) 12
9 5 B B(1) 5
10 7 C C(1) 7
到目前为止,我尝试了复制和groupby的组合,它没有像我预期的那样工作。我想我需要连续一些东西。但是我没有办法解决这个问题。
任何帮助将不胜感激。
答案 0 :(得分:4)
In [37]: g = df.groupby((df.Name != df.Name.shift()).cumsum())
In [38]: df['col1'] = df['Name'] + '(' + g['In.Cl'].transform('size').astype(str) + ')'
In [39]: df['col2'] = g['In.Cl'].transform('sum')
In [40]: df
Out[40]:
Name In.Cl col1 col2
0 A 2 A(1) 2
1 B 1 B(2) 6
2 B 5 B(2) 6
3 A 2 A(2) 6
4 A 4 A(2) 6
5 B 2 B(1) 2
6 C 3 C(3) 12
7 C 1 C(3) 12
8 C 8 C(3) 12
9 B 5 B(1) 5
10 C 7 C(1) 7
答案 1 :(得分:2)
利用itertools.groupby
稍微冗长的回答。
如果行数超过1000行,请使用@MaxU's solution - 速度更快。
from itertools import groupby, chain
from operator import itemgetter
chainer = chain.from_iterable
def sumfunc(x):
return (sum(map(itemgetter(1), x)), len(x))
grouper = groupby(zip(df['Name'], df['In.Cl']), key=itemgetter(0))
summer = [sumfunc(list(j)) for _, j in grouper]
df['Name'] += pd.Series(list(chainer(repeat(j, j) for i, j in summer))).astype(str)
df['col2'] = list(chainer(repeat(i, j) for i, j in summer))
print(df)
In.Cl Name col2
0 2 A1 2
1 1 B2 6
2 5 B2 6
3 2 A2 6
4 4 A2 6
5 2 B1 2
6 3 C3 12
7 1 C3 12
8 8 C3 12
9 5 B1 5
10 7 C1 7