pandas reindex multiindex并按第二个索引移动值

时间:2018-06-14 23:42:16

标签: python pandas multi-index

我有一个像这样的pandas DataFrame:

                        x1             x2            x3            x4
Date       Time                                                               
2017-01-03 09:00:00      0.000097      0.000259      0.000629      0.000142   
           09:20:00      0.000046      0.000044      0.000247      0.000134   
           09:40:00      0.000021      0.000032      0.000171      0.000105   
           10:00:00      0.000033      0.000040      0.000136      0.000178   
           10:20:00      0.000079      0.000157      0.000094      0.000083
           .....
           17:00:00      0.000032      0.000137      0.000024      0.000028

但是,我想重新索引第二个索引,一个20分钟的bin,我希望它看起来像这样:

                        x1             x2            x3            x4
Date       Time                                                               
2017-01-03 09:20:00      0.000097      0.000259      0.000629      0.000142   
           09:40:00      0.000046      0.000044      0.000247      0.000134   
           10:00:00      0.000021      0.000032      0.000171      0.000105   
           10:20:00      0.000033      0.000040      0.000136      0.000178   
           10:40:00      0.000079      0.000157      0.000094      0.000083
           .....
           17:20:00      0.000032      0.000137      0.000024      0.000028

因此所有值保持不变,只重命名第二个索引,其他所有值保持不变。

我尝试过以下代码:

x.reindex(pd.date_range(pd.Timestamp('09:20:00'), pd.Timestamp('17:20:00'), freq="20min").time, level=1)

但它只是移动索引并且值保持在同一个位置。

                        x1             x2            x3            x4
Date       Time                                                               
2017-01-03 09:20:00      0.000046      0.000044      0.000247      0.000134   
           09:40:00      0.000021      0.000032      0.000171      0.000105   
           10:00:00      0.000033      0.000040      0.000136      0.000178   
           10:20:00      0.000079      0.000157      0.000094      0.000083
           .....
           17:00:00      0.000032      0.000137      0.000024      0.000028

它甚至没有在17:20:00广告。

但是,如果在将它们分组之后我也尝试移动值:

x.groupby(level=1).shift(1)

或:

x.groupby(level=1).shift(1, freq='20min')

但这根本不起作用。

1 个答案:

答案 0 :(得分:3)

我能想到的最快的方法是用自己20分钟移位的版本覆盖MultiIndex的整个第一级(最里层):

x.index = x.index.set_levels(x.index.levels[1].shift(20, 'min'), level=1)

实施例

x = pd.DataFrame(index=pd.MultiIndex.from_product([pd.date_range('2017-01-03', '2017-01-06', freq='1D'), 
                                                   pd.date_range('09:00', '17:00', freq='20min')]))
x.loc[:, 'x1'] = list(range(len(x)))

x
                                x1
2017-01-03 2018-06-14 09:00:00   0
           2018-06-14 09:20:00   1
           2018-06-14 09:40:00   2
           2018-06-14 10:00:00   3
           2018-06-14 10:20:00   4
    ...                         ..
2017-01-06 2018-06-14 15:40:00  95
           2018-06-14 16:00:00  96
           2018-06-14 16:20:00  97
           2018-06-14 16:40:00  98
           2018-06-14 17:00:00  99

x.index = x.index.set_levels(x.index.levels[1].shift(20, 'min'), level=1)

x
                                x1
2017-01-03 2018-06-14 09:20:00   0
           2018-06-14 09:40:00   1
           2018-06-14 10:00:00   2
           2018-06-14 10:20:00   3
           2018-06-14 10:40:00   4
    ...                         ..
2017-01-06 2018-06-14 16:00:00  95
           2018-06-14 16:20:00  96
           2018-06-14 16:40:00  97
           2018-06-14 17:00:00  98
           2018-06-14 17:20:00  99