目前,我正在处理存储在MongoDB中的大量数据(来自更大的20M集合的2M单个集合)。 Feilds:id,项目名称,项目类型,项目描述和日期()
动态计算整个集合的一周和一个月的日期范围内出现的项目数。即从2014-01-01到2014-01-07有20个项目,从2014-01-08到2014-01-16有50个项目,等等
使用python,我该如何实现?他们的库是这个还是自定义代码?
或者,这应该通过MongoDB完成吗?
答案 0 :(得分:1)
一般方法当然是让数据库处理聚合。如果您想要在"周范围内的数据"然后有几种方法可以解决它,只需要根据你的实际需要的方法。
仅为5月份的#3月展示#34;例如,那么你会有类似的东西:
startdate = datetime(2018,5,1)
enddate = datetime(2018,6,1)
result = db.sales.aggregate([
{ '$match': { 'date': { '$gte': startdate, '$lt': enddate } } },
{ '$group': {
'_id': {
'year': { '$year': '$date' },
'week': { '$isoWeek': '$date' }
},
'totalQty': { '$sum': '$qty' },
'count': { '$sum': 1 }
}},
{ '$sort': { '_id': 1 } }
])
使用$year
和$isoWeek
或甚至$week
运算符进行相当简单的调用,具体取决于您的MongoDB版本实际支持的内容。您所需要做的就是在$group
的_id
分组键中指定这些内容,然后根据您实际需要选择其他累加器,例如$sum
"累积"在那个分组中。
$week
和$isoWeek
稍微不同,后者更符合Python isoweek
库的功能以及其他语言的类似功能。一般情况下,您可以通过添加1
来调整两周的周数。有关更多详细信息,请参阅文档。
在这种情况下,您可以选择让数据库执行"聚合"工作然后得到你想要的日期"根据输出。即对于python,您可以使用与每周相对应的datetime
值转换结果:
result = list(result)
for item in result:
item.update({
'start': datetime.combine(
Week(item['_id']['year'],item['_id']['week']).monday(),
datetime.min.time()
),
'end': datetime.combine(
Week(item['_id']['year'],item['_id']['week']).sunday(),
datetime.max.time()
)
})
item.pop('_id',None)
如果坚持ISO标准不适合你,那么另一种方法是定义你自己的"间隔"积累"分组"对于。这里使用MongoDB的主要工具是$bucket
,并预先处理一个小清单:
cuts = [startdate]
date = startdate
while ( date < enddate ):
date = date + timedelta(days=7)
if ( date > enddate ):
date = enddate
cuts.append(date)
alternate = db.sales.aggregate([
{ '$match': { 'date': { '$gte': startdate, '$lt': enddate } } },
{ '$bucket': {
'groupBy': '$date',
'boundaries': cuts,
'output': {
'totalQty': { '$sum': '$qty' },
'count': { '$sum': 1 }
}
}},
{ '$project': {
'_id': 0,
'start': '$_id',
'end': {
'$cond': {
'if': {
'$gt': [
{ '$add': ['$_id', (1000 * 60 * 60 * 24 * 7) - 1] },
enddate
]
},
'then': { '$add': [ enddate, -1 ] },
'else': {
'$add': ['$_id', (1000 * 60 * 60 * 24 * 7) - 1]
}
}
},
'totalQty': 1,
'count': 1
}}
])
而不是使用$week
或$isoWeek
等定义的函数,而是我们计算出7天的&#34;间隔&#34;从给定的查询开始日期开始,生成这些区间的数组,当然总是以&#34;最大值&#34;结束。来自所选数据范围的值。
然后在$bucket
聚合阶段为其list
选项提供此"boundaries"
。这实际上只是一个值列表,它告诉语句要积累什么&#34;直到&#34;对于每个&#34;分组&#34;产生的。
实际陈述实际上只是一个&#34;简写&#34;在$switch
管道阶段内实现$group
聚合运算符。这两个运算符都需要MongoDB 3.4,但您实际上可以使用$cond
中的$group
来执行相同的操作,但只需为每个&#34;边界&#34;嵌套每个else
条件。值。它是可能的,但只是更多涉及,你现在应该使用MongoDB 3.4作为最低版本。
如果你发现自己真的必须,那么在$cond
中使用$group
会添加到下面的示例中,只是展示了如何将同一个cuts
列表转换为这样的语句并且意味着你可以基本上做同样的事情,一直回到引入聚合框架的MongoDB 2.2。
作为一个完整的例子,您可以考虑以下列表,其中插入一个月的随机数据,然后在其上运行两个呈现的聚合选项:
from random import randint
from datetime import datetime, timedelta, date
from isoweek import Week
from pymongo import MongoClient
from bson.json_util import dumps, JSONOptions
import bson.json_util
client = MongoClient()
db = client.test
db.sales.delete_many({})
startdate = datetime(2018,5,1)
enddate = datetime(2018,6,1)
currdate = startdate
batch = []
while ( currdate < enddate ):
currdate = currdate + timedelta(hours=randint(1,24))
if ( currdate > enddate ):
currdate = enddate
qty = randint(1,100);
if ( currdate < enddate ):
batch.append({ 'date': currdate, 'qty': qty })
if ( len(batch) >= 1000 ):
db.sales.insert_many(batch)
batch = []
if ( len(batch) > 0):
db.sales.insert_many(batch)
batch = []
result = db.sales.aggregate([
{ '$match': { 'date': { '$gte': startdate, '$lt': enddate } } },
{ '$group': {
'_id': {
'year': { '$year': '$date' },
'week': { '$isoWeek': '$date' }
},
'totalQty': { '$sum': '$qty' },
'count': { '$sum': 1 }
}},
{ '$sort': { '_id': 1 } }
])
result = list(result)
for item in result:
item.update({
'start': datetime.combine(
Week(item['_id']['year'],item['_id']['week']).monday(),
datetime.min.time()
),
'end': datetime.combine(
Week(item['_id']['year'],item['_id']['week']).sunday(),
datetime.max.time()
)
})
item.pop('_id',None)
print("Week grouping")
print(
dumps(result,indent=2,
json_options=JSONOptions(datetime_representation=2)))
cuts = [startdate]
date = startdate
while ( date < enddate ):
date = date + timedelta(days=7)
if ( date > enddate ):
date = enddate
cuts.append(date)
alternate = db.sales.aggregate([
{ '$match': { 'date': { '$gte': startdate, '$lt': enddate } } },
{ '$bucket': {
'groupBy': '$date',
'boundaries': cuts,
'output': {
'totalQty': { '$sum': '$qty' },
'count': { '$sum': 1 }
}
}},
{ '$project': {
'_id': 0,
'start': '$_id',
'end': {
'$cond': {
'if': {
'$gt': [
{ '$add': ['$_id', (1000 * 60 * 60 * 24 * 7) - 1] },
enddate
]
},
'then': { '$add': [ enddate, -1 ] },
'else': {
'$add': ['$_id', (1000 * 60 * 60 * 24 * 7) - 1]
}
}
},
'totalQty': 1,
'count': 1
}}
])
alternate = list(alternate)
print("Bucket grouping")
print(
dumps(alternate,indent=2,
json_options=JSONOptions(datetime_representation=2)))
cuts = [startdate]
date = startdate
while ( date < enddate ):
date = date + timedelta(days=7)
if ( date > enddate ):
date = enddate
if ( date < enddate ):
cuts.append(date)
stack = []
for i in range(len(cuts)-1,0,-1):
rec = {
'$cond': [
{ '$lt': [ '$date', cuts[i] ] },
cuts[i-1]
]
}
if ( len(stack) == 0 ):
rec['$cond'].append(cuts[i])
else:
lval = stack.pop()
rec['$cond'].append(lval)
stack.append(rec)
pipeline = [
{ '$match': { 'date': { '$gt': startdate, '$lt': enddate } } },
{ '$group': {
'_id': stack[0],
'totalQty': { '$sum': '$qty' },
'count': { '$sum': 1 }
}},
{ '$sort': { '_id': 1 } },
{ '$project': {
'_id': 0,
'start': '$_id',
'end': {
'$cond': {
'if': {
'$gt': [
{ '$add': [ '$_id', ( 1000 * 60 * 60 * 24 * 7 ) - 1 ] },
enddate
]
},
'then': { '$add': [ enddate, -1 ] },
'else': {
'$add': [ '$_id', ( 1000 * 60 * 60 * 24 * 7 ) - 1 ]
}
}
},
'totalQty': 1,
'count': 1
}}
]
#print(
# dumps(pipeline,indent=2,
# json_options=JSONOptions(datetime_representation=2)))
older = db.sales.aggregate(pipeline)
older = list(older)
print("Cond Group")
print(
dumps(older,indent=2,
json_options=JSONOptions(datetime_representation=2)))
输出:
Week grouping
[
{
"totalQty": 449,
"count": 9,
"start": {
"$date": "2018-04-30T00:00:00Z"
},
"end": {
"$date": "2018-05-06T23:59:59.999Z"
}
},
{
"totalQty": 734,
"count": 14,
"start": {
"$date": "2018-05-07T00:00:00Z"
},
"end": {
"$date": "2018-05-13T23:59:59.999Z"
}
},
{
"totalQty": 686,
"count": 14,
"start": {
"$date": "2018-05-14T00:00:00Z"
},
"end": {
"$date": "2018-05-20T23:59:59.999Z"
}
},
{
"totalQty": 592,
"count": 12,
"start": {
"$date": "2018-05-21T00:00:00Z"
},
"end": {
"$date": "2018-05-27T23:59:59.999Z"
}
},
{
"totalQty": 205,
"count": 6,
"start": {
"$date": "2018-05-28T00:00:00Z"
},
"end": {
"$date": "2018-06-03T23:59:59.999Z"
}
}
]
Bucket grouping
[
{
"totalQty": 489,
"count": 11,
"start": {
"$date": "2018-05-01T00:00:00Z"
},
"end": {
"$date": "2018-05-07T23:59:59.999Z"
}
},
{
"totalQty": 751,
"count": 13,
"start": {
"$date": "2018-05-08T00:00:00Z"
},
"end": {
"$date": "2018-05-14T23:59:59.999Z"
}
},
{
"totalQty": 750,
"count": 15,
"start": {
"$date": "2018-05-15T00:00:00Z"
},
"end": {
"$date": "2018-05-21T23:59:59.999Z"
}
},
{
"totalQty": 493,
"count": 11,
"start": {
"$date": "2018-05-22T00:00:00Z"
},
"end": {
"$date": "2018-05-28T23:59:59.999Z"
}
},
{
"totalQty": 183,
"count": 5,
"start": {
"$date": "2018-05-29T00:00:00Z"
},
"end": {
"$date": "2018-05-31T23:59:59.999Z"
}
}
]
Cond Group
[
{
"totalQty": 489,
"count": 11,
"start": {
"$date": "2018-05-01T00:00:00Z"
},
"end": {
"$date": "2018-05-07T23:59:59.999Z"
}
},
{
"totalQty": 751,
"count": 13,
"start": {
"$date": "2018-05-08T00:00:00Z"
},
"end": {
"$date": "2018-05-14T23:59:59.999Z"
}
},
{
"totalQty": 750,
"count": 15,
"start": {
"$date": "2018-05-15T00:00:00Z"
},
"end": {
"$date": "2018-05-21T23:59:59.999Z"
}
},
{
"totalQty": 493,
"count": 11,
"start": {
"$date": "2018-05-22T00:00:00Z"
},
"end": {
"$date": "2018-05-28T23:59:59.999Z"
}
},
{
"totalQty": 183,
"count": 5,
"start": {
"$date": "2018-05-29T00:00:00Z"
},
"end": {
"$date": "2018-05-31T23:59:59.999Z"
}
}
]
由于上面的一些方法更像是#pythonic&#34;,因此对于更广泛的JavaScript主题,这个主题的共同点就像是:
const { Schema } = mongoose = require('mongoose');
const moment = require('moment');
const uri = 'mongodb://localhost/test';
mongoose.Promise = global.Promise;
//mongoose.set('debug',true);
const saleSchema = new Schema({
date: Date,
qty: Number
})
const Sale = mongoose.model('Sale', saleSchema);
const log = data => console.log(JSON.stringify(data, undefined, 2));
(async function() {
try {
const conn = await mongoose.connect(uri);
let start = new Date("2018-05-01");
let end = new Date("2018-06-01");
let date = new Date(start.valueOf());
await Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()));
let batch = [];
while ( date.valueOf() < end.valueOf() ) {
let hour = Math.floor(Math.random() * 24) + 1;
date = new Date(date.valueOf() + (1000 * 60 * 60 * hour));
if ( date > end )
date = end;
let qty = Math.floor(Math.random() * 100) + 1;
if (date < end)
batch.push({ date, qty });
if (batch.length >= 1000) {
await Sale.insertMany(batch);
batch = [];
}
}
if (batch.length > 0) {
await Sale.insertMany(batch);
batch = [];
}
let result = await Sale.aggregate([
{ "$match": { "date": { "$gte": start, "$lt": end } } },
{ "$group": {
"_id": {
"year": { "$year": "$date" },
"week": { "$isoWeek": "$date" }
},
"totalQty": { "$sum": "$qty" },
"count": { "$sum": 1 }
}},
{ "$sort": { "_id": 1 } }
]);
result = result.map(({ _id: { year, week }, ...r }) =>
({
start: moment.utc([year]).isoWeek(week).startOf('isoWeek').toDate(),
end: moment.utc([year]).isoWeek(week).endOf('isoWeek').toDate(),
...r
})
);
log({ name: 'ISO group', result });
let cuts = [start];
date = start;
while ( date.valueOf() < end.valueOf() ) {
date = new Date(date.valueOf() + ( 1000 * 60 * 60 * 24 * 7 ));
if ( date.valueOf() > end.valueOf() ) date = end;
cuts.push(date);
}
let alternate = await Sale.aggregate([
{ "$match": { "date": { "$gte": start, "$lt": end } } },
{ "$bucket": {
"groupBy": "$date",
"boundaries": cuts,
"output": {
"totalQty": { "$sum": "$qty" },
"count": { "$sum": 1 }
}
}},
{ "$addFields": {
"_id": "$$REMOVE",
"start": "$_id",
"end": {
"$cond": {
"if": {
"$gt": [
{ "$add": [ "$_id", ( 1000 * 60 * 60 * 24 * 7 ) - 1 ] },
end
]
},
"then": { "$add": [ end, -1 ] },
"else": {
"$add": [ "$_id", ( 1000 * 60 * 60 * 24 * 7 ) - 1 ]
}
}
}
}}
]);
log({ name: "Bucket group", result: alternate });
cuts = [start];
date = start;
while ( date.valueOf() < end.valueOf() ) {
date = new Date(date.valueOf() + ( 1000 * 60 * 60 * 24 * 7 ));
if ( date.valueOf() > end.valueOf() ) date = end;
if ( date.valueOf() < end.valueOf() )
cuts.push(date);
}
let stack = [];
for ( let i = cuts.length - 1; i > 0; i-- ) {
let rec = {
"$cond": [
{ "$lt": [ "$date", cuts[i] ] },
cuts[i-1]
]
};
if ( stack.length === 0 ) {
rec['$cond'].push(cuts[i])
} else {
let lval = stack.pop();
rec['$cond'].push(lval);
}
stack.push(rec);
}
let pipeline = [
{ "$group": {
"_id": stack[0],
"totalQty": { "$sum": "$qty" },
"count": { "$sum": 1 }
}},
{ "$sort": { "_id": 1 } },
{ "$project": {
"_id": 0,
"start": "$_id",
"end": {
"$cond": {
"if": {
"$gt": [
{ "$add": [ "$_id", ( 1000 * 60 * 60 * 24 * 7 ) - 1 ] },
end
]
},
"then": { "$add": [ end, -1 ] },
"else": {
"$add": [ "$_id", ( 1000 * 60 * 60 * 24 * 7 ) - 1 ]
}
}
},
"totalQty": 1,
"count": 1
}}
];
let older = await Sale.aggregate(pipeline);
log({ name: "Cond group", result: older });
mongoose.disconnect();
} catch(e) {
console.error(e)
} finally {
process.exit()
}
})()
当然类似的输出:
{
"name": "ISO group",
"result": [
{
"start": "2018-04-30T00:00:00.000Z",
"end": "2018-05-06T23:59:59.999Z",
"totalQty": 576,
"count": 10
},
{
"start": "2018-05-07T00:00:00.000Z",
"end": "2018-05-13T23:59:59.999Z",
"totalQty": 707,
"count": 11
},
{
"start": "2018-05-14T00:00:00.000Z",
"end": "2018-05-20T23:59:59.999Z",
"totalQty": 656,
"count": 12
},
{
"start": "2018-05-21T00:00:00.000Z",
"end": "2018-05-27T23:59:59.999Z",
"totalQty": 829,
"count": 16
},
{
"start": "2018-05-28T00:00:00.000Z",
"end": "2018-06-03T23:59:59.999Z",
"totalQty": 239,
"count": 6
}
]
}
{
"name": "Bucket group",
"result": [
{
"totalQty": 666,
"count": 11,
"start": "2018-05-01T00:00:00.000Z",
"end": "2018-05-07T23:59:59.999Z"
},
{
"totalQty": 727,
"count": 12,
"start": "2018-05-08T00:00:00.000Z",
"end": "2018-05-14T23:59:59.999Z"
},
{
"totalQty": 647,
"count": 12,
"start": "2018-05-15T00:00:00.000Z",
"end": "2018-05-21T23:59:59.999Z"
},
{
"totalQty": 743,
"count": 15,
"start": "2018-05-22T00:00:00.000Z",
"end": "2018-05-28T23:59:59.999Z"
},
{
"totalQty": 224,
"count": 5,
"start": "2018-05-29T00:00:00.000Z",
"end": "2018-05-31T23:59:59.999Z"
}
]
}
{
"name": "Cond group",
"result": [
{
"totalQty": 666,
"count": 11,
"start": "2018-05-01T00:00:00.000Z",
"end": "2018-05-07T23:59:59.999Z"
},
{
"totalQty": 727,
"count": 12,
"start": "2018-05-08T00:00:00.000Z",
"end": "2018-05-14T23:59:59.999Z"
},
{
"totalQty": 647,
"count": 12,
"start": "2018-05-15T00:00:00.000Z",
"end": "2018-05-21T23:59:59.999Z"
},
{
"totalQty": 743,
"count": 15,
"start": "2018-05-22T00:00:00.000Z",
"end": "2018-05-28T23:59:59.999Z"
},
{
"totalQty": 224,
"count": 5,
"start": "2018-05-29T00:00:00.000Z",
"end": "2018-05-31T23:59:59.999Z"
}
]
}