使用导航条在闪亮时使用热映射问题

时间:2018-06-11 15:41:40

标签: r shiny navbar heatmaply

编辑:我简化了应用程序,并使所有代码都可以重现。 编辑2:我刚刚发现,当我使用navBarPage时,我必须点击其他参数 - >颜色。然后按预期着色。

我正在开发一个闪亮的应用程序来过滤我的基因,然后绘制剩余基因的热图。最近,我发现了shinyHeatmaply包。我已经下载了他们的全局,用户界面和服务器,当我在自己的计算机上试用它时,它们按预期工作。不幸的是,当我尝试使用navbarPage组合我的过滤器应用程序和他们的热图时,最后一个不能正确地进行渲染。

我创建了一个极简主义示例,将shinyheatmap添加到https://shiny.rstudio.com/gallery/shiny-theme-selector.html应用中navbarPage的第二个tabPanel,但无论如何我得到了相同的灰色渲染。

Same mistake in a simpler application

用户界面: Navbar 1属于shinytheme应用程序,而Navbar 2的内容属于shinyheatmaply

tagList(
  shinythemes::themeSelector(),
  navbarPage(
    # theme = "cerulean",  # <--- To use a theme, uncomment this
    "shinythemes",
    tabPanel("Navbar 1",
             sidebarPanel(
               fileInput("file", "File input:"),
               textInput("txt", "Text input:", "general"),
               sliderInput("slider", "Slider input:", 1, 100, 30),
               tags$h5("Deafult actionButton:"),
               actionButton("action", "Search"),

               tags$h5("actionButton with CSS class:"),
               actionButton("action2", "Action button", class = "btn-primary")
             ),
             mainPanel(
               tabsetPanel(
                 tabPanel("Tab 1",
                          h4("Table"),
                          tableOutput("table"),
                          h4("Verbatim text output"),
                          verbatimTextOutput("txtout"),
                          h1("Header 1"),
                          h2("Header 2"),
                          h3("Header 3"),
                          h4("Header 4"),
                          h5("Header 5")
                 ),
                 tabPanel("Tab 2", "This panel is intentionally left blank"),
                 tabPanel("Tab 3", "This panel is intentionally left blank")
               )
             )
    ),
    tabPanel("Navbar 2", 
               fluidPage(
                 sidebarLayout(
                   sidebarPanel(width=4,
                                h4('Data Selection'),
                                fileInput(inputId="mydata", label = "Import Data",multiple = T),
                                uiOutput('data'),
                                checkboxInput('showSample','Subset Data'),
                                conditionalPanel('input.showSample',uiOutput('sample')),
                                hr(),h4('Data Preprocessing'),
                                column(width=4,selectizeInput('transpose','Transpose',choices = c('No'=FALSE,'Yes'=TRUE),selected = FALSE)),
                                column(width=4,selectizeInput("transform_fun", "Transform", c(Identity=".",Sqrt='sqrt',log='log',Scale='scale',Normalize='normalize',Percentize='percentize',"Missing values"='is.na10', Correlation='cor'),selected = '.')),
                                uiOutput('annoVars'),

                                br(),hr(),h4('Row dendrogram'),
                                column(width=6,selectizeInput("distFun_row", "Distance method", c(Euclidean="euclidean",Maximum='maximum',Manhattan='manhattan',Canberra='canberra',Binary='binary',Minkowski='minkowski'),selected = 'euclidean')),
                                column(width=6,selectizeInput("hclustFun_row", "Clustering linkage", c(Complete= "complete",Single= "single",Average= "average",Mcquitty= "mcquitty",Median= "median",Centroid= "centroid",Ward.D= "ward.D",Ward.D2= "ward.D2"),selected = 'complete')),
                                column(width=12,sliderInput("r", "Number of Clusters", min = 1, max = 15, value = 2)),    
                                #column(width=4,numericInput("r", "Number of Clusters", min = 1, max = 20, value = 2, step = 1)),   

                                br(),hr(),h4('Column dendrogram'),
                                column(width=6,selectizeInput("distFun_col", "Distance method", c(Euclidean="euclidean",Maximum='maximum',Manhattan='manhattan',Canberra='canberra',Binary='binary',Minkowski='minkowski'),selected = 'euclidean')),
                                column(width=6,selectizeInput("hclustFun_col", "Clustering linkage", c(Complete= "complete",Single= "single",Average= "average",Mcquitty= "mcquitty",Median= "median",Centroid= "centroid",Ward.D= "ward.D",Ward.D2= "ward.D2"),selected = 'complete')),
                                column(width=12,sliderInput("c", "Number of Clusters", min = 1, max = 15, value = 2)),
                                #column(width=4,numericInput("c", "Number of Clusters", min = 1, max = 20, value = 2, step = 1)),    

                                br(),hr(),  h4('Additional Parameters'),

                                column(3,checkboxInput('showColor','Color')),
                                column(3,checkboxInput('showMargin','Layout')),
                                column(3,checkboxInput('showDendo','Dendrogram')),
                                hr(),
                                conditionalPanel('input.showColor==1',
                                                 hr(),
                                                 h4('Color Manipulation'),
                                                 uiOutput('colUI'),
                                                 sliderInput("ncol", "Set Number of Colors", min = 1, max = 256, value = 256),
                                                 checkboxInput('colRngAuto','Auto Color Range',value = T),
                                                 conditionalPanel('!input.colRngAuto',uiOutput('colRng'))
                                ),

                                conditionalPanel('input.showDendo==1',
                                                 hr(),
                                                 h4('Dendrogram Manipulation'),
                                                 selectInput('dendrogram','Dendrogram Type',choices = c("both", "row", "column", "none"),selected = 'both'),
                                                 selectizeInput("seriation", "Seriation", c(OLO="OLO",GW="GW",Mean="mean",None="none"),selected = 'OLO'),
                                                 sliderInput('branches_lwd','Dendrogram Branch Width',value = 0.6,min=0,max=5,step = 0.1)
                                ),             

                                conditionalPanel('input.showMargin==1',
                                                 hr(),
                                                 h4('Widget Layout'),
                                                 column(4,textInput('main','Title','')),
                                                 column(4,textInput('xlab','X Title','')),
                                                 column(4,textInput('ylab','Y Title','')),
                                                 sliderInput('row_text_angle','Row Text Angle',value = 0,min=0,max=180),
                                                 sliderInput('column_text_angle','Column Text Angle',value = 45,min=0,max=180),
                                                 sliderInput("l", "Set Margin Width", min = 0, max = 200, value = 130),
                                                 sliderInput("b", "Set Margin Height", min = 0, max = 200, value = 40)
                                )
                   ),

                   mainPanel(
                     tabsetPanel(
                       tabPanel("Heatmaply",
                                tags$a(id = 'downloadData', class = paste("btn btn-default shiny-download-link",'mybutton'), href = "", target = "_blank", download = NA, icon("clone"), 'Download Heatmap as HTML'),
                                tags$head(tags$style(".mybutton{color:white;background-color:blue;} .skin-black .sidebar .mybutton{color: green;}") ),
                                plotlyOutput("heatout",height='600px')
                       ),
                       tabPanel("Data",
                                DT::dataTableOutput('tables')
                       )
                     )
                   )
                 )
               )



             ),
    tabPanel("Navbar 3", "This panel is intentionally left blank")
  )
)

服务器: 关于服务器,前两个输出对应闪亮主题,其他输出属于shinyheatmaply

d=data(package='datasets')$results[,'Item']
d=d[!grepl('[\\()]',d)]
d=d[!d%in%c('UScitiesD','eurodist','sleep','warpbreaks')]
d=d[unlist(lapply(d,function(d.in) eval(parse(text=paste0('ncol(as.data.frame(datasets::',d.in,'))')))))>1]
d=d[-which(d=='mtcars')]
d=c('mtcars',d)

server <- shinyServer(function(input, output,session) {


  ####This to output belongs to the shinytheme application####
  output$txtout <- renderText({
    paste(input$txt, input$slider, format(input$date), sep = ", ")
  })
  output$table <- renderTable({
    head(cars, 4)
  })
  #######################################################
  #Up to here the code belongs to shinyheatmaply
  output$txtout <- renderText({
    paste(input$txt, input$slider, format(input$date), sep = ", ")
  })
  output$table <- renderTable({
    head(cars, 4)
  })

  TEMPLIST<-new.env()
  TEMPLIST$d<-d
  #Annotation Variable UI ----
  observeEvent(data.sel(),{
    output$annoVars<-renderUI({
      data.in=data.sel()
      NM=NULL

      if(any(sapply(data.in,class)=='factor')){
        NM=names(data.in)[which(sapply(data.in,class)=='factor')]  
      } 
      column(width=4,
             selectizeInput('annoVar','Annotation',choices = names(data.in),selected=NM,multiple=T,options = list(placeholder = 'select columns',plugins = list("remove_button")))
      )
    })


    #Sampling UI ----  
    output$sample<-renderUI({
      list(
        column(4,textInput(inputId = 'setSeed',label = 'Seed',value = sample(1:10000,1))),
        column(4,numericInput(inputId = 'selRows',label = 'Number of Rows',min=1,max=pmin(500,nrow(data.sel())),value = pmin(500,nrow(data.sel())))),
        column(4,selectizeInput('selCols','Columns Subset',choices = names(data.sel()),multiple=T))
      )
    })
  })

  #Data Selection UI ----
  output$data=renderUI({
    if(!is.null(input$mydata)) TEMPLIST$d=c(input$mydata$name,TEMPLIST$d)
    selData=head(TEMPLIST$d,1)
    selectInput("data","Select Data",TEMPLIST$d,selected = selData)
  })


  #Color Pallete UI ----
  output$colUI<-renderUI({

    colSel='Vidiris'
    if(input$transform_fun=='cor') colSel='RdBu'
    if(input$transform_fun=='is.na10') colSel='grey.colors'

    selectizeInput(inputId ="pal", label ="Select Color Palette",
                   choices = c('Vidiris (Sequential)'="viridis",
                               'Magma (Sequential)'="magma",
                               'Plasma (Sequential)'="plasma",
                               'Inferno (Sequential)'="inferno",
                               'Magma (Sequential)'="magma",
                               'Magma (Sequential)'="magma",

                               'RdBu (Diverging)'="RdBu",
                               'RdYlBu (Diverging)'="RdYlBu",
                               'RdYlGn (Diverging)'="RdYlGn",
                               'BrBG (Diverging)'="BrBG",
                               'Spectral (Diverging)'="Spectral",

                               'BuGn (Sequential)'='BuGn',
                               'PuBuGn (Sequential)'='PuBuGn',
                               'YlOrRd (Sequential)'='YlOrRd',
                               'Heat (Sequential)'='heat.colors',
                               'Grey (Sequential)'='grey.colors'),
                   selected=colSel)
  })

  #Manual Color Range UI ----
  output$colRng=renderUI({
    if(!is.null(data.sel())) {
      rng=range(data.sel(),na.rm = TRUE)
    }else{
      rng=range(mtcars) # TODO: this should probably be changed
    }
    # sliderInput("colorRng", "Set Color Range", min = round(rng[1],1), max = round(rng[2],1), step = .1, value = rng)  
    n_data = nrow(data.sel())

    min_min_range = ifelse(input$transform_fun=='cor',-1,-Inf)
    min_max_range = ifelse(input$transform_fun=='cor',1,rng[1])
    min_value = ifelse(input$transform_fun=='cor',-1,rng[1])

    max_min_range = ifelse(input$transform_fun=='cor',-1,rng[2])
    max_max_range = ifelse(input$transform_fun=='cor',1,Inf)
    max_value = ifelse(input$transform_fun=='cor',1,rng[2])

    a_good_step = 0.1 # (max_range-min_range) / n_data

    list(
      numericInput("colorRng_min", "Set Color Range (min)", value = min_value, min = min_min_range, max = min_max_range, step = a_good_step),
      numericInput("colorRng_max", "Set Color Range (max)", value = max_value, min = max_min_range, max = max_max_range, step = a_good_step)
    )

  })

  #Import/Select Data ----
  data.sel=eventReactive(input$data,{
    if(input$data%in%d){
      eval(parse(text=paste0('data.in=as.data.frame(datasets::',input$data,')')))
    }else{
      data.in=importSwitch(input$mydata[input$mydata$name%in%input$data,])
    }
    data.in=as.data.frame(data.in)
    # data.in=data.in[,sapply(data.in,function(x) class(x))%in%c('numeric','integer')] # no need for this
    return(data.in)
  })  

  #Building heatmaply ----
  interactiveHeatmap<- reactive({
    data.in=data.sel()
    if(input$showSample){
      if(!is.null(input$selRows)){
        set.seed(input$setSeed)
        if((input$selRows >= 2) & (input$selRows < nrow(data.in))){
          # if input$selRows == nrow(data.in) then we should not do anything (this save refreshing when clicking the subset button)
          if(length(input$selCols)<=1) data.in=data.in[sample(1:nrow(data.in),pmin(500,input$selRows)),]
          if(length(input$selCols)>1) data.in=data.in[sample(1:nrow(data.in),pmin(500,input$selRows)),input$selCols]
        }
      }
    }
    # ss_num = sapply(data.in,function(x) class(x)) %in% c('numeric','integer') # in order to only transform the numeric values

    if(length(input$annoVar)>0){
      if(all(input$annoVar%in%names(data.in))) 
        data.in <- data.in%>%mutate_at(funs(factor),.vars=vars(input$annoVar))
    } 

    ss_num =  sapply(data.in, is.numeric) # in order to only transform the numeric values

    if(input$transpose) data.in=t(data.in)
    if(input$transform_fun!='.'){
      if(input$transform_fun=='is.na10'){
        updateCheckboxInput(session = session,inputId = 'showColor',value = T)
        data.in[, ss_num]=is.na10(data.in[, ss_num])
      } 
      if(input$transform_fun=='cor'){
        updateCheckboxInput(session = session,inputId = 'showColor',value = T)
        updateCheckboxInput(session = session,inputId = 'colRngAuto',value = F)
        data.in=cor(data.in[, ss_num],use = "pairwise.complete.obs")
      }
      if(input$transform_fun=='log') data.in[, ss_num]= apply(data.in[, ss_num],2,log)
      if(input$transform_fun=='sqrt') data.in[, ss_num]= apply(data.in[, ss_num],2,sqrt) 
      if(input$transform_fun=='normalize') data.in=heatmaply::normalize(data.in)
      if(input$transform_fun=='scale') data.in[, ss_num] = scale(data.in[, ss_num])
      if(input$transform_fun=='percentize') data.in=heatmaply::percentize(data.in)
    } 



    if(!is.null(input$tables_true_search_columns)) 
      data.in=data.in[activeRows(input$tables_true_search_columns,data.in),]
    if(input$colRngAuto){
      ColLimits=NULL 
    }else{
      ColLimits=c(input$colorRng_min, input$colorRng_max)
    }

    distfun_row = function(x) dist(x, method = input$distFun_row)
    distfun_col =  function(x) dist(x, method = input$distFun_col)

    hclustfun_row = function(x) hclust(x, method = input$hclustFun_row)
    hclustfun_col = function(x) hclust(x, method = input$hclustFun_col)

    p <- heatmaply(data.in,
                   main = input$main,xlab = input$xlab,ylab = input$ylab,
                   row_text_angle = input$row_text_angle,
                   column_text_angle = input$column_text_angle,
                   dendrogram = input$dendrogram,
                   branches_lwd = input$branches_lwd,
                   seriate = input$seriation,
                   colors=eval(parse(text=paste0(input$pal,'(',input$ncol,')'))),
                   distfun_row =  distfun_row,
                   hclustfun_row = hclustfun_row,
                   distfun_col = distfun_col,
                   hclustfun_col = hclustfun_col,
                   k_col = input$c, 
                   k_row = input$r,
                   limits = ColLimits) %>% 
      layout(margin = list(l = input$l, b = input$b, r='0px'))

    p$elementId <- NULL

    p
  })

  #Render Plot ----
  observeEvent(input$data,{
    output$heatout <- renderPlotly({
      if(!is.null(input$data))
        interactiveHeatmap()
    })
  })

  #Render Data Table ----
  output$tables=DT::renderDataTable(data.sel(),server = T,filter='top',
                                    extensions = c('Scroller','FixedHeader','FixedColumns','Buttons','ColReorder'),
                                    options = list(
                                      dom = 't',
                                      buttons = c('copy', 'csv', 'excel', 'pdf', 'print','colvis'),
                                      colReorder = TRUE,
                                      scrollX = TRUE,
                                      fixedColumns = TRUE,
                                      fixedHeader = TRUE,
                                      deferRender = TRUE,
                                      scrollY = 500,
                                      scroller = TRUE
                                    ))

  #Clone Heatmap ----
  observeEvent({interactiveHeatmap()},{
    h<-interactiveHeatmap()

    l<-list(main = input$main,xlab = input$xlab,ylab = input$ylab,
            row_text_angle = input$row_text_angle,
            column_text_angle = input$column_text_angle,
            dendrogram = input$dendrogram,
            branches_lwd = input$branches_lwd,
            seriate = input$seriation,
            colors=paste0(input$pal,'(',input$ncol,')'),
            distfun_row =  input$distFun_row,
            hclustfun_row = input$hclustFun_row,
            distfun_col = input$distFun_col,
            hclustfun_col = input$hclustFun_col,
            k_col = input$c, 
            k_row = input$r,
            limits = paste(c(input$colorRng_min, input$colorRng_max),collapse=',')
    )

    #l=l[!l=='']
    l=data.frame(Parameter=names(l),Value=do.call('rbind',l),row.names = NULL,stringsAsFactors = F)
    l[which(l$Value==''),2]='NULL'
    paramTbl=print(xtable::xtable(l),type = 'html',include.rownames=FALSE,print.results = F,html.table.attributes = c('border=0'))


    h$width='100%'
    h$height='800px'
    s<-tags$div(style="position: relative; bottom: 5px;",
                HTML(paramTbl),
                tags$em('This heatmap visualization was created using',
                        tags$a(href="https://github.com/yonicd/shinyHeatmaply/",target="_blank",'shinyHeatmaply'),
                        Sys.time()
                )
    )

    output$downloadData <- downloadHandler(
      filename = function() {
        paste("heatmaply-", gsub(' ','_',Sys.time()), ".html", sep="")
      },
      content = function(file) {
        libdir <- paste(tools::file_path_sans_ext(basename(file)),"_files", sep = "")

        htmltools::save_html(htmltools::browsable(htmltools::tagList(h,s)),file=file,libdir = libdir)
        if (!htmlwidgets:::pandoc_available()) {
          stop("Saving a widget with selfcontained = TRUE requires pandoc. For details see:\n", 
               "https://github.com/rstudio/rmarkdown/blob/master/PANDOC.md")
        }

        htmlwidgets:::pandoc_self_contained_html(file, file)

        unlink(libdir, recursive = TRUE)
      }
    )
  })
  #End of Code ----
})

提前感谢解决这个问题的英雄。 最好的奖励,丹尼尔。

1 个答案:

答案 0 :(得分:0)

问题是条件面板(使用js)和导航栏页面之间存在冲突,由于任何原因均未读取默认参数,因此未启用应启用的自动着色。我只是删除了此条件面板,并始终设置其选项。