据我所知,从自动编码器中提取的特征可以输入到mlp中进行分类或回归。这是我之前做的事情 但是,如果我有2个自动编码器怎么办?我可以从2个自动编码器的瓶颈层中提取特征并将它们输入到基于这些特征进行分类的mlp中吗?如果是,那怎么样?我不知道如何连接这两个功能集。我尝试使用numpy.hstack(),它给了我不可用的切片'错误,然而,使用tf.concat()给我的错误'模型的输入张量必须是Keras张量。'两个自动编码器的瓶颈层各有一个尺寸(无,100)。所以,基本上,如果我将它们水平堆叠,我应该得到一个(无,200)。 mlp的隐藏层可能包含一些(num_hidden = 100)神经元。有人可以帮忙吗?
x1 = autoencoder1.get_layer('encoder2').output
x2 = autoencoder2.get_layer('encoder2').output
#inp = np.hstack((x1, x2))
inp = tf.concat([x1, x2], 1)
x = tf.concat([x1, x2], 1)
h = Dense(num_hidden, activation='relu', name='hidden')(x)
y = Dense(1, activation='sigmoid', name='prediction')(h)
mymlp = Model(inputs=inp, outputs=y)
# Compile model
mymlp.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Train model
mymlp.fit(x_train, y_train, epochs=20, batch_size=8)
根据@ twolffpiggott的建议更新:
from keras.layers import Input, Dense, Dropout
from keras import layers
from keras.models import Model
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import numpy as np
x1 = Data1
x2 = Data2
y = Data3
num_neurons1 = x1.shape[1]
num_neurons2 = x2.shape[1]
# Train-test split
x1_train, x1_test, x2_train, x2_test, y_train, y_test = train_test_split(x1, x2, y, test_size=0.2)
# scale data within [0-1] range
scalar = MinMaxScaler()
x1_train = scalar.fit_transform(x1_train)
x1_test = scalar.transform(x1_test)
x2_train = scalar.fit_transform(x2_train)
x2_test = scalar.transform(x2_test)
x_train = np.concatenate([x1_train, x2_train], axis =-1)
x_test = np.concatenate([x1_test, x2_test], axis =-1)
# Auto-encoder1
encoding_dim1 = 500
encoding_dim2 = 100
input_data = Input(shape=(num_neurons1,))
encoded = Dense(encoding_dim1, activation='relu', name='encoder1')(input_data)
encoded1 = Dense(encoding_dim2, activation='relu', name='encoder2')(encoded)
decoded = Dense(encoding_dim2, activation='relu', name='decoder1')(encoded1)
decoded = Dense(num_neurons1, activation='sigmoid', name='decoder2')(decoded)
# this model maps an input to its reconstruction
autoencoder1 = Model(inputs=input_data, outputs=decoded)
autoencoder1.compile(optimizer='sgd', loss='mse')
# training
autoencoder1.fit(x1_train, x1_train,
epochs=100,
batch_size=8,
shuffle=True,
validation_data=(x1_test, x1_test))
# Auto-encoder2
encoding_dim1 = 500
encoding_dim2 = 100
input_data = Input(shape=(num_neurons2,))
encoded = Dense(encoding_dim1, activation='relu', name='encoder1')(input_data)
encoded2 = Dense(encoding_dim2, activation='relu', name='encoder2')(encoded)
decoded = Dense(encoding_dim2, activation='relu', name='decoder1')(encoded2)
decoded = Dense(num_neurons2, activation='sigmoid', name='decoder2')(decoded)
# this model maps an input to its reconstruction
autoencoder2 = Model(inputs=input_data, outputs=decoded)
autoencoder2.compile(optimizer='sgd', loss='mse')
# training
autoencoder2.fit(x2_train, x2_train,
epochs=100,
batch_size=8,
shuffle=True,
validation_data=(x2_test, x2_test))
# MLP
num_hidden = 100
encoded1.trainable = False
encoded2.trainable = False
encoded1 = autoencoder1(autoencoder1.inputs)
encoded2 = autoencoder2(autoencoder2.inputs)
concatenated = layers.concatenate([encoded1, encoded2], axis=-1)
x = Dropout(0.2)(concatenated)
h = Dense(num_hidden, activation='relu', name='hidden')(x)
h = Dropout(0.5)(h)
y = Dense(1, activation='sigmoid', name='prediction')(h)
myMLP = Model(inputs=[autoencoder1.inputs, autoencoder2.inputs], outputs=y)
# Compile model
myMLP.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Training
myMLP.fit(x_train, y_train, epochs=200, batch_size=8)
# Testing
myMLP.predict(x_test)
给我一个错误:不可用的类型:' list'从行: myMLP = Model(inputs = [autoencoder1.inputs,autoencoder2.inputs],outputs = y)
答案 0 :(得分:2)
问题在于你将numpy数组与keras张量混合在一起。这不可能。
有两种方法。
就个人而言,我是第一个去的。 (假设自动编码器已经过培训,不需要更改)。
numpyOutputFromAuto1 = autoencoder1.predict(numpyInputs1)
numpyOutputFromAuto2 = autoencoder2.predict(numpyInputs2)
inputDataForThird = np.concatenate([numpyOutputFromAuto1,numpyOutputFromAuto2],axis=-1)
inputTensorForMlp = Input(inputsForThird.shape[1:])
h = Dense(num_hidden, activation='relu', name='hidden')(inputTensorForMlp)
y = Dense(1, activation='sigmoid', name='prediction')(h)
mymlp = Model(inputs=inputTensorForMlp, outputs=y)
....
mymlp.fit(inputDataForThird ,someY)
这有点复杂,起初我没有太多理由去做这件事。 (但当然可能存在一个不错的选择)
现在我们完全忘记了numpy并且与keras张量合作。
单独创建mlp(如果稍后在没有自动编码器的情况下使用它,那就很好):
inputTensorForMlp = Input(input_shape_compatible_with_concatenated_encoder_outputs)
x = Dropout(0.2)(inputTensorForMlp)
h = Dense(num_hidden, activation='relu', name='hidden')(x)
h = Dropout(0.5)(h)
y = Dense(1, activation='sigmoid', name='prediction')(h)
myMLP = Model(inputs=[autoencoder1.inputs, autoencoder2.inputs], outputs=y)
我们可能想要自动编码器的瓶颈功能,对吧?如果您碰巧使用以下方法正确创建自动编码器:编码器模型,解码器模型,加入两者,那么它更容易使用编码器模型。否则:
encodedOutput1 = autoencoder1.layers[bottleneckLayer].outputs #or encoder1.outputs
encodedOutput2 = autoencoder1.layers[bottleneckLayer].outputs #or encoder2.outputs
创建已加入的模型。连接必须使用keras层(我们正在使用keras张量):
concatenated = Concatenate()([encodedOutput1,encodedOutput2])
output = myMLP(concatenated)
joinedModel = Model([autoencoder1.input,autoencoder2.input],output)
答案 1 :(得分:0)
我也会选择丹尼尔的第一种方法(为了简单和效率),但如果你对第二种方法感兴趣的话。例如,如果您对端到端运行网络感兴趣,可以这样做:
input_data1
主要修改
input_data2
两者)的变量input_data
和autoencoder1.inputs
。即使unhashable type: list
返回tf张量,这也是[input_data1, input_data2]
例外的来源,替换为x1_train
可以解决问题。x2_train
和{{1}}的列表,而不是连接的输入。预测时也一样。