我是深度学习的新手。在第一步中,我使用keras在python中创建和训练模型,并使用此代码冻结:
def export_model(MODEL_NAME, input_node_name, output_node_name):
tf.train.write_graph(K.get_session().graph_def, 'out', \
MODEL_NAME + '_graph.pbtxt')
tf.train.Saver().save(K.get_session(), 'out/' + MODEL_NAME + '.chkp')
freeze_graph.freeze_graph('out/' + MODEL_NAME + '_graph.pbtxt', None, \
False, 'out/' + MODEL_NAME + '.chkp', output_node_name, \
"save/restore_all", "save/Const:0", \
'out/frozen_' + MODEL_NAME + '.pb', True, "")
input_graph_def = tf.GraphDef()
with tf.gfile.Open('out/frozen_' + MODEL_NAME + '.pb', "rb") as f:
input_graph_def.ParseFromString(f.read())
output_graph_def = optimize_for_inference_lib.optimize_for_inference(
input_graph_def, [input_node_name], [output_node_name],
tf.float32.as_datatype_enum)
with tf.gfile.FastGFile('out/opt_' + MODEL_NAME + '.pb', "wb") as f:
f.write(output_graph_def.SerializeToString())
它的输出:
当我想通过readNetFromTensorflow在opencv c ++中读取网络时:
String weights = "frozen_Model.pb";
String pbtxt = "Model_graph.pbtxt";
dnn::Net cvNet = cv::dnn::readNetFromTensorflow(weights, pbtxt);
这会产生错误:
OpenCV(4.0.0-pre)错误:未指定错误(FAILED:ReadProtoFromBinaryFile(param_file,param)。无法解析cv :: dnn :: ReadTFNetParamsFromBinaryFileOrDie中的GraphDef文件:frozen_Model.pb,文件D:\ LIBS \ OpenCV-4.00 \ modules \ dnn \ src \ tensorflow \ tf_io.cpp,第44行
和
OpenCV(4.0.0-pre)错误:断言失败(const_layers.insert(std :: make_pair(name,li))。second)在cv :: dnn :: experimental_dnn_v4 ::`anonymous-namespace':: addConstNodes,文件D:\ LIBS \ OpenCV-4.00 \ modules \ dnn \ src \ tensorflow \ tf_importer.cpp,第555行
如何解决此错误?
答案 0 :(得分:1)
Amin,我可以请你尝试在测试模式下保存图表:
K.backend.set_learning_phase(0) # <--- This setting makes all the following layers work in test mode
model = Sequential(name = MODEL_NAME)
model.add(Conv2D(filters = 128, kernel_size = (5, 5), activation = 'relu',name = 'FirstLayerConv2D_No1',input_shape = (Width, Height, image_channel)))
...
model.add(Dropout(0.25))
model.add(Dense(100, activation = 'softmax', name = 'endNode'))
# Create a graph definition (with no weights)
sess = K.backend.get_session()
sess.as_default()
tf.train.write_graph(sess.graph.as_graph_def(), "", 'graph_def.pb', as_text=False)
然后使用freeze_graph.py脚本新创建的graph_def.pb
冻结检查点文件(不要忘记使用--input_binary
标记)。
答案 1 :(得分:0)
部分代码: 创建模型,培训和export_model
train_batch = gen.flow_from_directory(path + 'Train', target_size = (Width, Height), shuffle = False, color_mode = color_mode,
batch_size = batch_size_train, class_mode = 'categorical')
.
.
X_train, Y_train = next(train_batch)
.
.
X_train = X_train.reshape(X_train.shape).astype('float32')
.
.
model = Sequential(name = MODEL_NAME)
model.add(Conv2D(filters = 128, kernel_size = (5, 5), activation = 'relu',name = 'FirstLayerConv2D_No1',input_shape = (Width, Height, image_channel)))
model.add(Conv2D(filters = 128, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPool2D(pool_size = (2, 2)))
model.add(BatchNormalization())
.
.
.
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(200, activation = 'tanh'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(100, activation = 'softmax', name = 'endNode'))
model.compile(loss = 'categorical_crossentropy',
optimizer = SGD(lr = 0.01, momentum = 0.9), metrics = ['accuracy'])
history = model.fit(X_train, Y_train, batch_size = batch_size_fit, epochs = epoch, shuffle = True,
verbose = 1, validation_split = .1, validation_data = (X_test, Y_test))
export_model(MODEL_NAME, "FirstLayerConv2D_No1/Relu", "endNode/Softmax")
答案 2 :(得分:0)
在python
中编写图形时,需要执行以下步骤:
with tf.Session(graph=tf.Graph()) as sess:
# 1. Load saved model
saved_model = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], SAVED_MODEL_PATH)
# 2. Convert variables to constants
inference_graph_def = tf.graph_util.convert_variables_to_constants(sess, saved_model.graph_def, OUTPUT_NODE_NAMES)
# 3. Optimize for inference
optimized_graph_def = optimize_for_inference_lib.optimize_for_inference(inference_graph_def,
INPUT_NODE_NAMES,
OUTPUT_NODE_NAMES,
tf.float32.as_datatype_enum)
# 4. Save .pb file
tf.train.write_graph(optimized_graph_def, MODEL_DIR, 'model_name.pb', as_text=False)
# 5. Transform graph
transforms = [
'strip_unused_nodes(type=float, shape=\"1,128,128,3\")',
'remove_nodes(op=PlaceholderWithDefault)',
'remove_device',
'sort_by_execution_order'
]
transformed_graph_def = TransformGraph(optimized_graph_def,
INPUT_NODE_NAMES,
OUTPUT_NODE_NAMES,
transforms)
# 6. Remove constant nodes and attributes
for i in reversed(range(len(transformed_graph_def.node))):
if transformed_graph_def.node[i].op == "Const":
del transformed_graph_def.node[i]
for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim',
'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training', 'Tpaddings']:
if attr in transformed_graph_def.node[i].attr:
del transformed_graph_def.node[i].attr[attr]
# 7. Save .pbtxt file
tf.train.write_graph(transformed_graph_def, MODEL_DIR, 'model_name.pbtxt', as_text=True)
此外,如果您有特殊的节点,例如Flatten
,则需要手动删除并重命名一些节点。
更多信息here。