无法在cloudera中为Hive创建存储桶

时间:2018-06-01 11:20:09

标签: hive bigdata cloudera bucket

我正在尝试在Cloudera的Hive中创建一个bucketed表。但是,创建一个没有任何存储桶的普通表。

首先,我使用Hive CLI

创建了一个名为marks_temp的普通表
CREATE  TABLE marks_temp(
id INT,
Name string,
mark int
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

我已将以下数据从“Desktop / Data / littlebigdata.txt”文本文件加载到marks_temp表中

101,Firdaus,88
102,Pranav,78
103,Rahul,65
104,Sanjoy,65
105,Firdaus,88
106,Pranav,78
107,Rahul,65
108,Sanjoy,65
109,Amar,54
110,Sahil,34
111,Rahul,45
112,Rajnish,67
113,Ranjeet,56
114,Sanjoy,34 

我已使用以下命令

加载了以上数据
LOAD DATA LOCAL INPATH 'Desktop/Data/littlebigdata.txt'
INTO TABLE  marks_temp;

成功加载数据后,我正在创建一个名为marks_temp

的分段表
CREATE TABLE marks_bucketed(
id INT,
Name string,
mark int
)
CLUSTERED BY (id) INTO 4 BUCKETS;

现在,我在marks_temp table中的marks_bucketed表中插入数据。

INSERT INTO marks_bucketed
SELECT id,Name, mark FROM marks_temp;

在此之后,一些工作开始运行。什么,我在作业日志中观察到它说“减少任务的数量设置为0,因为没有减少运算符”

hive> insert into marks_bucketed
        > select id,Name,mark from marks_temp;
    Query ID = cloudera_20180601035353_29b25ffe-541e-491e-aea6-b36ede88ed79
    Total jobs = 3
    Launching Job 1 out of 3
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_1527668582032_0004, Tracking URL = http://quickstart.cloudera:8088/proxy/application_1527668582032_0004/
    Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1527668582032_0004
    Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
    2018-06-01 03:54:01,328 Stage-1 map = 0%,  reduce = 0%
    2018-06-01 03:54:14,444 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.21 sec
    MapReduce Total cumulative CPU time: 2 seconds 210 msec
    Ended Job = job_1527668582032_0004
    Stage-4 is selected by condition resolver.
    Stage-3 is filtered out by condition resolver.
    Stage-5 is filtered out by condition resolver.
    Moving data to: hdfs://quickstart.cloudera:8020/user/hive/warehouse/marks_bucketed/.hive-staging_hive_2018-06-01_03-53-45_726_2788383119636056364-1/-ext-10000
    Loading data to table default.marks_bucketed
    Table default.marks_bucketed stats: [numFiles=1, numRows=14, totalSize=194, rawDataSize=180]
    MapReduce Jobs Launched: 
    Stage-Stage-1: Map: 1   Cumulative CPU: 2.21 sec   HDFS Read: 3937 HDFS Write: 273 SUCCESS
    Total MapReduce CPU Time Spent: 2 seconds 210 msec
    OK
    Time taken: 31.307 seconds

甚至,Hue文件浏览器只显示一个文件。屏幕截图已附上。 Hue File Browser screenshot for marks_bucketed table

1 个答案:

答案 0 :(得分:1)

来自Hive文档

  

仅版本0.x和1.x

     

命令集hive.enforce.bucketing = true;允许正确的   Reducer的数量和按列自动的簇   根据表格选择。否则,你需要设置   减速器的数量与集合中的桶数相同   mapred.reduce.tasks = 256;并且有一个CLUSTER BY ...子句   选择。

因此您需要设置属性以强制进行分组或转到手动选项并运行查询

set mapred.reduce.tasks = 4;
select id,Name,mark from marks_temp cluster by id;