我正在尝试在1个节点的AWS Fargate集群中设置构建作业。当我尝试运行Spark来构建我的数据时,我收到的错误似乎是Java无法找到“localHost”。
我通过运行添加spark-env.sh
文件的脚本来设置配置,更新/etc/hosts
文件并更新spark-defaults.conf
文件。
在$SPARK_HOME/conf/spark-env.sh
文件中,我添加:
SPARK_LOCAL_IP
SPARK_MASTER_HOST
在$SPARK_HOME/conf/spark-defaults.conf
spark.jars.packages <comma separated jars>
spark.master <ip or URL>
spark.driver.bindAddress <IP or URL>
spark.driver.host <IP or URL>
在/etc/hosts
文件中,我追加:
<IP I get from http://169.254.170.2/v2/metadata> master
通过使用IP或URL传递spark-submit
参数来调用-master <IP or URL>
脚本似乎没有帮助。
我尝试使用local[*]
,spark://<ip from metadata>:<port from metadata>
,<ip>
和<ip>:<port>
变体,但无济于事。
与使用127.0.0.1
之类的内容和从元数据返回的IP相比,使用localhost
和master
似乎没有什么区别。
在AWS方面,Fargate集群在附加了NatGateway的私有子网中运行,因此据我所知,它确实有出口和入口网络路由。我已尝试使用公共网络并ENABLED
ECS的设置自动将公共IP附加到容器。
Spark文档中的所有标准端口也在容器上打开。
它似乎运行良好,直到它试图收集自己的IP。
我得到的错误在堆栈中有这个:
spark.jars.packages com.amazonaws:aws-java-sdk:1.7.4,org.apache.hadoop:hadoop-aws:2.7.2
spark.master spark://10.0.41.190:7077
Spark Command: /docker-java-home/bin/java -cp /usr/spark/conf/:/usr/spark/jars/* -Xmx1gg org.apache.spark.deploy.SparkSubmit --master spark://10.0.41.190:7077 --verbose --jars lib/RedshiftJDBC42-1.2.12.1017.jar --packages org.apache.hadoop:hadoop-aws:2.7.3,com.amazonaws:aws-java-sdk:1.7.4,com.upplication:s3fs:2.2.1 ./build_phase.py
========================================
Using properties file: /usr/spark/conf/spark-defaults.conf
Exception in thread "main" java.lang.ExceptionInInitializerError
at org.apache.spark.util.Utils$.redact(Utils.scala:2653)
at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$defaultSparkProperties$1.apply(SparkSubmitArguments.scala:93)
at org.apache.spark.deploy.SparkSubmitArguments$$anonfun$defaultSparkProperties$1.apply(SparkSubmitArguments.scala:86)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.deploy.SparkSubmitArguments.defaultSparkProperties$lzycompute(SparkSubmitArguments.scala:86)
at org.apache.spark.deploy.SparkSubmitArguments.defaultSparkProperties(SparkSubmitArguments.scala:82)
at org.apache.spark.deploy.SparkSubmitArguments.mergeDefaultSparkProperties(SparkSubmitArguments.scala:126)
at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:110)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.net.UnknownHostException: d4771b650361: d4771b650361: Name or service not known
at java.net.InetAddress.getLocalHost(InetAddress.java:1505)
at org.apache.spark.util.Utils$.findLocalInetAddress(Utils.scala:891)
at org.apache.spark.util.Utils$.org$apache$spark$util$Utils$$localIpAddress$lzycompute(Utils.scala:884)
at org.apache.spark.util.Utils$.org$apache$spark$util$Utils$$localIpAddress(Utils.scala:884)
at org.apache.spark.util.Utils$$anonfun$localHostName$1.apply(Utils.scala:941)
at org.apache.spark.util.Utils$$anonfun$localHostName$1.apply(Utils.scala:941)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.util.Utils$.localHostName(Utils.scala:941)
at org.apache.spark.internal.config.package$.<init>(package.scala:204)
at org.apache.spark.internal.config.package$.<clinit>(package.scala)
... 10 more
尝试在本地运行时容器没有问题所以我认为它与Fargate的性质有关。
非常感谢任何帮助或指示!
修改
自从这篇文章以来,我尝试了几件不同的事情。我使用的是运行Spark 2.3,Hadoop 2.7和Python 3的图像,我尝试添加操作系统包以及我已经提到的配置的不同变体。
这一切都闻起来像我在做spark-defaults.conf
和朋友们的错误,但我对这些东西很新,它可能只是木星和火星的错误对齐...
当前堆栈跟踪:
Getting Spark Context...
2018-06-08 22:39:40 INFO SparkContext:54 - Running Spark version 2.3.0
2018-06-08 22:39:40 INFO SparkContext:54 - Submitted application: SmashPlanner
2018-06-08 22:39:41 INFO SecurityManager:54 - Changing view acls to: root
2018-06-08 22:39:41 INFO SecurityManager:54 - Changing modify acls to: root
2018-06-08 22:39:41 INFO SecurityManager:54 - Changing view acls groups to:
2018-06-08 22:39:41 INFO SecurityManager:54 - Changing modify acls groups to:
2018-06-08 22:39:41 INFO SecurityManager:54 - SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
2018-06-08 22:39:41 ERROR SparkContext:91 - Error initializing SparkContext.
java.nio.channels.UnresolvedAddressException
at sun.nio.ch.Net.checkAddress(Net.java:101)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:218)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:128)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:558)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1283)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:501)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:486)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:989)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:254)
at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:364)
at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:403)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:463)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Thread.java:748)
2018-06-08 22:39:41 INFO SparkContext:54 - Successfully stopped SparkContext
Traceback (most recent call last):
File "/usr/local/smash_planner/build_phase.py", line 13, in <module>
main()
File "/usr/local/smash_planner/build_phase.py", line 9, in main
build_all_data(pred_date)
File "/usr/local/smash_planner/DataPiping/build_data.py", line 25, in build_all_data
save_keyword(pred_date)
File "/usr/local/smash_planner/DataPiping/build_data.py", line 52, in save_keyword
df = get_dataframe(query)
File "/usr/local/smash_planner/SparkUtil/data_piping.py", line 15, in get_dataframe
sc = SparkCtx.get_sparkCtx()
File "/usr/local/smash_planner/SparkUtil/context.py", line 20, in get_sparkCtx
sc = SparkContext(conf=conf).getOrCreate()
File "/usr/spark-2.3.0/python/lib/pyspark.zip/pyspark/context.py", line 118, in __init__
File "/usr/spark-2.3.0/python/lib/pyspark.zip/pyspark/context.py", line 180, in _do_init
File "/usr/spark-2.3.0/python/lib/pyspark.zip/pyspark/context.py", line 270, in _initialize_context
File "/usr/local/lib/python3.4/dist-packages/py4j-0.10.6-py3.4.egg/py4j/java_gateway.py", line 1428, in __call__
answer, self._gateway_client, None, self._fqn)
File "/usr/local/lib/python3.4/dist-packages/py4j-0.10.6-py3.4.egg/py4j/protocol.py", line 320, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.nio.channels.UnresolvedAddressException
at sun.nio.ch.Net.checkAddress(Net.java:101)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:218)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:128)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:558)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1283)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:501)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:486)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:989)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:254)
at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:364)
at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:403)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:463)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Thread.java:748)
2018-06-08 22:39:41 INFO ShutdownHookManager:54 - Shutdown hook called
2018-06-08 22:39:41 INFO ShutdownHookManager:54 - Deleting directory /tmp/spark-80488ba8-2367-4fa6-8bb7-194b5ebf08cc
Traceback (most recent call last):
File "bin/smash_planner.py", line 76, in <module>
raise RuntimeError("Spark hated your config and/or invocation...")
RuntimeError: Spark hated your config and/or invocation...
SparkConf运行时配置:
def get_dataframe(query):
...
sc = SparkCtx.get_sparkCtx()
sql_context = SQLContext(sc)
df = sql_context.read \
.format("jdbc") \
.option("driver", "com.amazon.redshift.jdbc42.Driver") \
.option("url", os.getenv('JDBC_URL')) \
.option("user", os.getenv('REDSHIFT_USER')) \
.option("password", os.getenv('REDSHIFT_PASSWORD')) \
.option("dbtable", "( " + query + " ) tmp ") \
.load()
return df
修改2
仅使用spark-env
配置并使用gettyimages/docker-spark图片中的默认值运行会在浏览器中显示此错误。
java.util.NoSuchElementException
at java.util.Collections$EmptyIterator.next(Collections.java:4189)
at org.apache.spark.util.kvstore.InMemoryStore$InMemoryIterator.next(InMemoryStore.java:281)
at org.apache.spark.status.AppStatusStore.applicationInfo(AppStatusStore.scala:38)
at org.apache.spark.ui.jobs.AllJobsPage.render(AllJobsPage.scala:273)
at org.apache.spark.ui.WebUI$$anonfun$2.apply(WebUI.scala:82)
at org.apache.spark.ui.WebUI$$anonfun$2.apply(WebUI.scala:82)
at org.apache.spark.ui.JettyUtils$$anon$3.doGet(JettyUtils.scala:90)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:687)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:790)
at org.spark_project.jetty.servlet.ServletHolder.handle(ServletHolder.java:848)
at org.spark_project.jetty.servlet.ServletHandler.doHandle(ServletHandler.java:584)
at org.spark_project.jetty.server.handler.ContextHandler.doHandle(ContextHandler.java:1180)
at org.spark_project.jetty.servlet.ServletHandler.doScope(ServletHandler.java:512)
at org.spark_project.jetty.server.handler.ContextHandler.doScope(ContextHandler.java:1112)
at org.spark_project.jetty.server.handler.ScopedHandler.handle(ScopedHandler.java:141)
at org.spark_project.jetty.server.handler.gzip.GzipHandler.handle(GzipHandler.java:493)
at org.spark_project.jetty.server.handler.ContextHandlerCollection.handle(ContextHandlerCollection.java:213)
at org.spark_project.jetty.server.handler.HandlerWrapper.handle(HandlerWrapper.java:134)
at org.spark_project.jetty.server.Server.handle(Server.java:534)
at org.spark_project.jetty.server.HttpChannel.handle(HttpChannel.java:320)
at org.spark_project.jetty.server.HttpConnection.onFillable(HttpConnection.java:251)
at org.spark_project.jetty.io.AbstractConnection$ReadCallback.succeeded(AbstractConnection.java:283)
at org.spark_project.jetty.io.FillInterest.fillable(FillInterest.java:108)
at org.spark_project.jetty.io.SelectChannelEndPoint$2.run(SelectChannelEndPoint.java:93)
at org.spark_project.jetty.util.thread.strategy.ExecuteProduceConsume.executeProduceConsume(ExecuteProduceConsume.java:303)
at org.spark_project.jetty.util.thread.strategy.ExecuteProduceConsume.produceConsume(ExecuteProduceConsume.java:148)
at org.spark_project.jetty.util.thread.strategy.ExecuteProduceConsume.run(ExecuteProduceConsume.java:136)
at org.spark_project.jetty.util.thread.QueuedThreadPool.runJob(QueuedThreadPool.java:671)
at org.spark_project.jetty.util.thread.QueuedThreadPool$2.run(QueuedThreadPool.java:589)
at java.lang.Thread.run(Thread.java:748)
答案 0 :(得分:1)
解决方案是避免用户错误...
这是一个完全面相的情况,但我希望我对Spark系统的误解可以帮助像我这样的可怜的傻瓜,他们花了太多时间停留在相同类型的问题上。
最后一次迭代(gettyimages/docker-spark
Docker镜像)的答案是我试图在没有启动主服务器或工作服务器的情况下运行spark-submit
命令。
在gettyimages/docker-spark
存储库中,您可以找到一个docker-compose
文件,该文件向您显示在完成任何Spark工作之前,它已创建master
和worker
节点。映像创建主服务器或工作服务器的方式分别是使用spark-class
脚本并传入org.apache.spark.deploy.<master|worker>.<Master|Worker>
类。
因此,综上所述,我可以使用以前使用的配置,但是我必须先创建master
和worker(s)
,然后像我一样执行spark-submit
命令已经在做。
这是一个快速而肮脏的实现,尽管我保证有更好的方法,由真正知道自己在做什么的人完成:
前3个步骤在集群启动脚本中进行。我是在由APIGateway触发的AWS Lambda中执行此操作
以下所有内容均在Spark节点上的启动脚本中发生
SPARK_MASTER_HOST
和SPARK_LOCAL_IP
添加到$SPARK_HOME/conf/spark-env.sh
文件中spark.driver.bindAddress
添加到$SPARK_HOME/conf/spark-defaults.conf
文件中gettyimages/docker-spark
图像中,您可以使用$SPARK_HOME/bin/spark-class org.apache.spark.deploy.master.Master -h <the master's IP or domain>
来启动主服务器,而可以使用$SPARK_HOME/bin/spark-class org.apache.spark.deploy.worker.Worker -h spark://<master's domain or IP>:7077
来启动工作器spark-submit
命令,它将把工作部署到集群中。编辑:(一些代码供参考) 这是lambda的补充
def handler(event, context):
config = BuildConfig(event)
res = create_job(config)
return build_response(res)
以及修改后
def handler(event, context):
config = BuildConfig(event)
coordination_queue = config.cluster + '-coordination'
sqs = boto3.client('sqs')
message_for_master_node = {'type': 'master', 'count': config.count}
queue_urls = sqs.list_queues(QueueNamePrefix=coordination_queue)['QueueUrls']
if not queue_urls:
queue_url = sqs.create_queue(QueueName=coordination_queue)['QueueUrl']
else:
queue_url = queue_urls[0]
sqs.send_message(QueueUrl=queue_url,
MessageBody=message_for_master_node)
res = create_job(config)
return build_response(res)
然后我在启动时在Spark集群中运行节点的脚本中添加了一些内容:
# addition to the "main" in the Spark node's startup script
sqs = boto3.client('sqs')
boot_info_message = sqs.receive_message(
QueueUrl=os.getenv('COORDINATIN_QUEUE_URL'),
MaxNumberOfMessages=1)['Messages'][0]
boot_info = boot_info_message['Body']
message_for_worker = {'type': 'worker', 'master': self_url}
if boot_info['type'] == 'master':
for i in range(int(boot_info['count'])):
sqs.send_message(QueueUrl=os.getenv('COORDINATIN_QUEUE_URL'),
MessageBody=message_for_worker)
sqs.delete_message(QueueUrl=os.getenv('COORDINATIN_QUEUE_URL'),
ReceiptHandle=boot_info_message['ReceiptHandle'])
...
# starts a master or worker node
startup_command = "org.apache.spark.deploy.{}.{}".format(
boot_info['type'], boot_info['type'].title())
subprocess.call(startup_command)
答案 1 :(得分:0)
转到AWS控制台并在安全组配置下,允许实例的所有入站流量。