我正在尝试使用pandas填充缺失值,但无法获得输出。
输入数据:此处缺少某些行值。
Date_time current_demand Temp_Mean humidity_Mean
0 2018-05-01 00:00 15951.0 300.904267 49.600000
1 2018-05-01 00:15 16075.0 300.904267 49.600000
2 2018-05-01 00:30 15977.0 300.904267 49.600000
3 2018-05-01 00:45 15945.0 300.837600 50.333333
4 2018-05-01 01:00 15868.0 298.889333 59.133333
5 2018-05-01 01:15 15583.0 298.889333 59.133333
6 2018-05-01 01:30 15470.0 298.756000 59.800000
7 2018-05-01 01:45 15301.0 298.756000 59.800000
8 2018-05-01 02:15 14946.0 298.756000 59.800000
9 2018-05-01 02:30 14736.0 298.756000 59.800000
10 2018-05-01 02:45 14630.0 298.502333 59.000000
11 2018-05-01 03:15 14350.0 298.502333 59.000000
我试过的脚本:
import pandas as pd
import numpy as np
df = pd.read_csv(r'submission.csv', index_col=[1], parse_dates=[1], dayfirst=True)
df['Date_time'] = pd.to_datetime(df['Date_time']).dt.time
start = pd.to_datetime(str(df['Date_time'].min()))
end = pd.to_datetime(str(df['Date_time'].max()))
dates = pd.date_range(start=start, end=end, freq='15Min').time
df1 = pd.pivot_table(df, "current_demand", "Temp_Mean", "humidity_Mean").stack(dropna=False).reset_index(name="current_demand")
df1.loc[df1['current_demand'].isnull(), "Temp_Mean", "Temp_Mean" , "humidity_Mean"] = np.nan
浓淡输出:
Date_time current_demand Temp_Mean humidity_Mean
0 2018-05-01 00:00 15951.0 300.904267 49.600000
1 2018-05-01 00:15 16075.0 300.904267 49.600000
2 2018-05-01 00:30 15977.0 300.904267 49.600000
3 2018-05-01 00:45 15945.0 300.837600 50.333333
4 2018-05-01 01:00 15868.0 298.889333 59.133333
5 2018-05-01 01:15 15583.0 298.889333 59.133333
6 2018-05-01 01:30 15470.0 298.756000 59.800000
7 2018-05-01 01:45 15301.0 298.756000 59.800000
8 2018-05-01 02:00 0 0 0
9 2018-05-01 02:15 14946.0 298.756000 59.800000
10 2018-05-01 02:30 14736.0 298.756000 59.800000
11 2018-05-01 02:45 14630.0 298.502333 59.000000
12 2018-05-01 03:00 0 0 0
13 2018-05-01 03:15 14350.0 298.502333 59.000000
但是在0的位置 - 由昨天的数据填充()表示数据或之前数据的前一天)
请建议。提前谢谢
修改
df = df.set_index(['Date_time']).asfreq('15T').ffill()
#df = df.set_index('Date_time').resample('15T').ffill() #as same
#df = df.asfreq('15T').ffill()
df = df.asfreq('15T').fillna(df.shift(1, freq='d'))
为什么我得到NaN
?请让我知道
current_demand Temp_Mean humidity_Mean
Date_time
2018-05-01 00:00:00 NaN NaN NaN
2018-05-01 00:15:00 NaN NaN NaN
2018-05-01 00:30:00 NaN NaN NaN
2018-05-01 00:45:00 NaN NaN NaN
2018-05-01 01:00:00 NaN NaN NaN
答案 0 :(得分:2)
df = pd.read_csv(r'submission.csv', index_col=[1], parse_dates=[1], dayfirst=True)
df = df.asfreq('15T').ffill()
df = df.resample('15T').ffill()
print (df)
current_demand Temp_Mean humidity_Mean
Date_time
2018-05-01 00:00:00 15951.0 300.904267 49.600000
2018-05-01 00:15:00 16075.0 300.904267 49.600000
2018-05-01 00:30:00 15977.0 300.904267 49.600000
2018-05-01 00:45:00 15945.0 300.837600 50.333333
2018-05-01 01:00:00 15868.0 298.889333 59.133333
2018-05-01 01:15:00 15583.0 298.889333 59.133333
2018-05-01 01:30:00 15470.0 298.756000 59.800000
2018-05-01 01:45:00 15301.0 298.756000 59.800000
2018-05-01 02:00:00 15301.0 298.756000 59.800000
2018-05-01 02:15:00 14946.0 298.756000 59.800000
2018-05-01 02:30:00 14736.0 298.756000 59.800000
2018-05-01 02:45:00 14630.0 298.502333 59.000000
2018-05-01 03:00:00 14630.0 298.502333 59.000000
2018-05-01 03:15:00 14350.0 298.502333 59.000000
如果您希望在前几天将NaN
替换为fillna
并且shift
编辑DataFrame
,则
df = df.asfreq('15T').fillna(df.shift(1, freq='d'))
答案 1 :(得分:0)
使用pd.Grouper
和pd.Series.ffill
填充前一天数据的空数据的一种方法:
df = pd.DataFrame([['2018-05-01 00:00', 15951.0, 300.904267, 49.600000],
['2018-05-01 00:15', 16075.0, 300.904267, 49.600000],
['2018-05-01 00:30', 15977.0, 300.904267, 49.600000],
['2018-05-01 01:00', 15868.0, 298.889333, 298.889333]],
columns=['Date_time', 'current_demand', 'Temp_Mean', 'humidity_Mean'])
df['Date_time'] = pd.to_datetime(df['Date_time'])
grouper = pd.Grouper(key='Date_time', freq='15T')
res = df.groupby(grouper).first().ffill().reset_index()
print(res)
Date_time current_demand Temp_Mean humidity_Mean
0 2018-05-01 00:00:00 15951.0 300.904267 49.600000
1 2018-05-01 00:15:00 16075.0 300.904267 49.600000
2 2018-05-01 00:30:00 15977.0 300.904267 49.600000
3 2018-05-01 00:45:00 15977.0 300.904267 49.600000
4 2018-05-01 01:00:00 15868.0 298.889333 298.889333