如何在python中随机森林的提取决策规则

时间:2018-05-30 08:49:10

标签: machine-learning scikit-learn deep-learning random-forest decision-tree

我有一个问题。我从某人那里听说,在R中,你可以使用额外的软件包来提取RF中实现的决策规则,我试着在python中使用google相同的东西但没有运气,如果对如何实现这一点有任何帮助。 提前谢谢!

1 个答案:

答案 0 :(得分:1)

假设您使用sklearn RandomForestClassifier,则可以找到.estimators_作为单个决策树。每棵树将决策节点存储为tree_下的多个NumPy数组。

这是一些示例代码,它们仅按数组顺序打印每个节点。在典型的应用中,人们会跟随孩子们走动。

import numpy
from sklearn.model_selection import train_test_split
from sklearn import metrics, datasets, ensemble

def print_decision_rules(rf):

    for tree_idx, est in enumerate(rf.estimators_):
        tree = est.tree_
        assert tree.value.shape[1] == 1 # no support for multi-output

        print('TREE: {}'.format(tree_idx))

        iterator = enumerate(zip(tree.children_left, tree.children_right, tree.feature, tree.threshold, tree.value))
        for node_idx, data in iterator:
            left, right, feature, th, value = data

            # left: index of left child (if any)
            # right: index of right child (if any)
            # feature: index of the feature to check
            # th: the threshold to compare against
            # value: values associated with classes            

            # for classifier, value is 0 except the index of the class to return
            class_idx = numpy.argmax(value[0])

            if left == -1 and right == -1:
                print('{} LEAF: return class={}'.format(node_idx, class_idx))
            else:
                print('{} NODE: if feature[{}] < {} then next={} else next={}'.format(node_idx, feature, th, left, right))    


digits = datasets.load_digits()
Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target)
estimator = ensemble.RandomForestClassifier(n_estimators=3, max_depth=2)
estimator.fit(Xtrain, ytrain)

print_decision_rules(estimator)

outout示例:

TREE: 0
0 NODE: if feature[33] < 2.5 then next=1 else next=4
1 NODE: if feature[38] < 0.5 then next=2 else next=3
2 LEAF: return class=2
3 LEAF: return class=9
4 NODE: if feature[50] < 8.5 then next=5 else next=6
5 LEAF: return class=4
6 LEAF: return class=0
...

我们在emtree中使用类似的东西将随机森林编译为C代码。