如何将TensorFlow模型导出为.tflite文件?

时间:2018-05-29 10:19:10

标签: python tensorflow machine-learning pycharm tensorflow-lite

背景资料:

我编写的TensorFlow模型非常类似于TensorFlow提供的premade iris classification model。差异相对较小:

  • 我正在对足球运动进行分类,而不是虹膜种类。
  • 我有10个功能和一个标签,而不是4个功能和一个标签。
  • 我有5种不同的练习,而不是3种鸢尾种类。
  • 我的trainData包含大约3500行,而不仅仅是120行。
  • 我的testData包含大约330行,而不仅仅是30行。
  • 我使用的是DNN分类器,n_classes = 6,而不是3。

我现在想要将模型导出为.tflite文件。但是根据TensorFlow Developer Guide,我需要先将模型导出到tf.GraphDef文件,然后将其冻结,然后我才能将其转换。但是,TensorFlow提供的用于从自定义模型创建.pb文件的tutorial似乎仅针对图像分类模型进行了优化。

问题:

那么如何将虹膜分类示例模型等模型转换为.tflite文件?是否有更简单,更直接的方法,无需将其导出到.pb文件,然后冻结等等?基于虹膜分类代码的示例或指向更明确的教程的链接将非常有用!

其他信息:

  • OS:macOS 10.13.4 High Sierra
  • TensorFlow版本:1.8.0
  • Python版本:3.6.4
  • 使用PyCharm社区2018.1.3

代码:

可以通过输入以下命令克隆虹膜分类代码:

git clone https://github.com/tensorflow/models

但是如果你不想下载整个软件包,请点击这里:

这是名为 premade_estimator.py 的分类器文件:

    #  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
    #
    #  Licensed under the Apache License, Version 2.0 (the "License");
    #  you may not use this file except in compliance with the License.
    #  You may obtain a copy of the License at
    #
    #  http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing,                         software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    #  limitations under the License.
    """An Example of a DNNClassifier for the Iris dataset."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function

    import argparse
    import tensorflow as tf

    import iris_data

    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', default=100, type=int, help='batch size')
    parser.add_argument('--train_steps', default=1000, type=int,
                help='number of training steps')


    def main(argv):
        args = parser.parse_args(argv[1:])

        # Fetch the data
        (train_x, train_y), (test_x, test_y) = iris_data.load_data()

        # Feature columns describe how to use the input.
        my_feature_columns = []
        for key in train_x.keys():
                    my_feature_columns.append(tf.feature_column.numeric_column(key=key))

        # Build 2 hidden layer DNN with 10, 10 units respectively.
        classifier = tf.estimator.DNNClassifier(
            feature_columns=my_feature_columns,
            # Two hidden layers of 10 nodes each.
            hidden_units=[10, 10],
            # The model must choose between 3 classes.
            n_classes=3)

        # Train the Model.
        classifier.train(
            input_fn=lambda: iris_data.train_input_fn(train_x, train_y,
                                              args.batch_size),
            steps=args.train_steps)

        # Evaluate the model.
        eval_result = classifier.evaluate(
            input_fn=lambda: iris_data.eval_input_fn(test_x, test_y,
                                             args.batch_size))

        print('\nTest set accuracy:         {accuracy:0.3f}\n'.format(**eval_result))

        # Generate predictions from the model
        expected = ['Setosa', 'Versicolor', 'Virginica']
        predict_x = {
            'SepalLength': [5.1, 5.9, 6.9],
            'SepalWidth': [3.3, 3.0, 3.1],
            'PetalLength': [1.7, 4.2, 5.4],
            'PetalWidth': [0.5, 1.5, 2.1],
        }

        predictions = classifier.predict(
            input_fn=lambda: iris_data.eval_input_fn(predict_x,
                                                     labels=None,
                                                     batch_size=args.batch_size))

        template = '\nPrediction is "{}" ({:.1f}%), expected "{}"'

        for pred_dict, expec in zip(predictions, expected):
            class_id = pred_dict['class_ids'][0]
            probability = pred_dict['probabilities'][class_id]

            print(template.format(iris_data.SPECIES[class_id],
                          100 * probability, expec))


    if __name__ == '__main__':
        # tf.logging.set_verbosity(tf.logging.INFO)
        tf.app.run(main)

这是名为 iris_data.py 的数据文件:

    import pandas as pd
    import tensorflow as tf

    TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
    TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

    CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
                        'PetalLength', 'PetalWidth', 'Species']
    SPECIES = ['Setosa', 'Versicolor', 'Virginica']


    def maybe_download():
        train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
        test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)

        return train_path, test_path


    def load_data(y_name='Species'):
        """Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
        train_path, test_path = maybe_download()

        train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
        train_x, train_y = train, train.pop(y_name)

        test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
        test_x, test_y = test, test.pop(y_name)

        return (train_x, train_y), (test_x, test_y)


    def train_input_fn(features, labels, batch_size):
        """An input function for training"""
        # Convert the inputs to a Dataset.
        dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

        # Shuffle, repeat, and batch the examples.
        dataset = dataset.shuffle(1000).repeat().batch(batch_size)

        # Return the dataset.
        return dataset


    def eval_input_fn(features, labels, batch_size):
        """An input function for evaluation or prediction"""
        features = dict(features)
        if labels is None:
            # No labels, use only features.
            inputs = features
        else:
            inputs = (features, labels)

        # Convert the inputs to a Dataset.
        dataset = tf.data.Dataset.from_tensor_slices(inputs)

        # Batch the examples
        assert batch_size is not None, "batch_size must not be None"
        dataset = dataset.batch(batch_size)

        # Return the dataset.
        return dataset

** 更新 **

好的,我发现了一段看似非常有用的代码on this page

    import tensorflow as tf

    img = tf.placeholder(name="img", dtype=tf.float32, shape=(1, 64, 64, 3))
    val = img + tf.constant([1., 2., 3.]) + tf.constant([1., 4., 4.])
    out = tf.identity(val, name="out")
    with tf.Session() as sess:
      tflite_model = tf.contrib.lite.toco_convert(sess.graph_def, [img], [out])
      open("test.tflite", "wb").write(tflite_model)

这个小家伙直接将简单模型转换为TensorFlow Lite模型。现在,我所要做的就是找到一种方法使其适应虹膜分类模型。有什么建议吗?

2 个答案:

答案 0 :(得分:1)

  

是否有更简单,更直接的方法,无需将其导出到.pb文件,然后冻结等等?

是的,正如您在更新的问题中指出的那样,可以freeze the graph直接在python api中使用toco_convert。它需要冻结图形并确定输入和输出形状。在您的问题中,没有冻结图步骤,因为没有变量。如果你有变量并运行toco而不先将它们转换为常量,那么toco会抱怨!

  

现在我所要做的就是找到一种方法使其适应虹膜分类模型。有什么建议吗?

这个稍微复杂一些,需要更多的工作。基本上,您需要加载图形并找出输入和输出张量名称,然后冻结图形并调用toco_convert。为了在这种情况下找到输入和输出张量名称(你没有定义图形),你必须围绕生成的图形,并根据输入的形状,名称等确定它们。这是你可以附加的代码premade_estimator.py中主函数的结束,在这种情况下生成tflite图。

print("\n====== classifier model_dir, latest_checkpoint ===========")
print(classifier.model_dir)
print(classifier.latest_checkpoint())
debug = False

with tf.Session() as sess:
    # First let's load meta graph and restore weights
    latest_checkpoint_path = classifier.latest_checkpoint()
    saver = tf.train.import_meta_graph(latest_checkpoint_path + '.meta')
    saver.restore(sess, latest_checkpoint_path)

    # Get the input and output tensors needed for toco.
    # These were determined based on the debugging info printed / saved below.
    input_tensor = sess.graph.get_tensor_by_name("dnn/input_from_feature_columns/input_layer/concat:0")
    input_tensor.set_shape([1, 4])
    out_tensor = sess.graph.get_tensor_by_name("dnn/logits/BiasAdd:0")
    out_tensor.set_shape([1, 3])

    # Pass the output node name we are interested in.
    # Based on the debugging info printed / saved below, pulled out the
    # name of the node for the logits (before the softmax is applied).
    frozen_graph_def = tf.graph_util.convert_variables_to_constants(
        sess, sess.graph_def, output_node_names=["dnn/logits/BiasAdd"])

    if debug is True:
        print("\nORIGINAL GRAPH DEF Ops ===========================================")
        ops = sess.graph.get_operations()
        for op in ops:
            if "BiasAdd" in op.name or "input_layer" in op.name:
                print([op.name, op.values()])
        # save original graphdef to text file
        with open("estimator_graph.pbtxt", "w") as fp:
            fp.write(str(sess.graph_def))

        print("\nFROZEN GRAPH DEF Nodes ===========================================")
        for node in frozen_graph_def.node:
            print(node.name)
        # save frozen graph def to text file
        with open("estimator_frozen_graph.pbtxt", "w") as fp:
            fp.write(str(frozen_graph_def))

tflite_model = tf.contrib.lite.toco_convert(frozen_graph_def, [input_tensor], [out_tensor])
open("estimator_model.tflite", "wb").write(tflite_model)

注意:我假设从最后一层(应用Softmax之前)的logits作为输出,对应于节点 dnn / logits / BiasAdd 即可。如果你想要概率,我相信它是 dnn / head / predictions / probabilities

答案 1 :(得分:0)

这是执行此操作的更标准方法,而不是使用toco_convert。感谢Pannag Sanketi提供了上面基于toco的示例,这是此代码的基础。

请注意,因为我们使用的是分类NN,所以输出层为logits。如果我们有回归神经网络,则将有所不同。 classifier是您构建的NN模型。

    def export_tflite(classifier):
        with tf.Session() as sess:
            # First let's load meta graph and restore weights
            latest_checkpoint_path = classifier.latest_checkpoint()
            saver = tf.train.import_meta_graph(latest_checkpoint_path + '.meta')
            saver.restore(sess, latest_checkpoint_path)

            # Get the input and output tensors
            input_tensor = sess.graph.get_tensor_by_name("dnn/input_from_feature_columns/input_layer/concat:0")
            out_tensor = sess.graph.get_tensor_by_name("dnn/logits/BiasAdd:0")

            # here the code differs from the toco example above
            sess.run(tf.global_variables_initializer())
            converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [out_tensor])
            tflite_model = converter.convert()
            open("converted_model.tflite", "wb").write(tflite_model)