在每个具有日期时间索引的数据框字典中查找最大和最小日期的最pythonic方法是什么?例如:
import pandas as pd
import datetime
df1 = pd.DataFrame(index = [datetime.datetime(2016, 7, 2, 0, 0),
datetime.datetime(2016, 8, 6, 0, 0),
datetime.datetime(2016, 9, 13, 0, 0),
datetime.datetime(2016, 10, 26, 0, 0),
datetime.datetime(2016, 11, 2, 0, 0)],
data = {'bee' : [5, 3, 1, 0, 2],
'an' : [2,3,2,2,7]})
df2 = pd.DataFrame(index = [datetime.datetime(2015, 7, 2, 0, 0),
datetime.datetime(2015, 8, 6, 0, 0),
datetime.datetime(2015, 9, 13, 0, 0),
datetime.datetime(2015, 10, 26, 0, 0),
datetime.datetime(2015, 11, 2, 0, 0)],
data = {'bee' : [15, 2, 5, 0, 2],
'an' : [1,1,2,7,7]})
df_dict = {'df1':df1, 'df2':df2}
df_dict['df1']
输出:
index an bee
2016-07-02 2 5
2016-08-06 3 3
2016-09-13 2 1
2016-10-26 2 0
2016-11-02 7 2
和
df_dict['df2']
输出
index an bee
2015-07-02 1 15
2015-08-06 1 2
2015-09-13 2 5
2015-10-26 7 0
2015-11-02 7 2
所以,我想找到df_dict
的最大日期,应该是2016-11-02,最小日期为df_dict
,即2015-07-02。
答案 0 :(得分:2)
获取每个max
的{{1}}以及每个max
的{{1}}
min
添加@Wen建议,如果您不能同时使用min
和max(max(v.index) for k,v in df_dict.items())
min(min(v.index) for k,v in df_dict.items())
2016-11-02 00:00:00
2015-07-02 00:00:00
,则可以
k
甚至
v
答案 1 :(得分:2)
使用pd.concat
pd.concat(df_dict).index.get_level_values(1).max()
Out[159]: Timestamp('2016-11-02 00:00:00')
pd.concat(df_dict).index.get_level_values(1).min()
Out[160]: Timestamp('2015-07-02 00:00:00')