创建doc2vec模型
x:句子清单(电影评论)
长度x = 2000
doc2vec_data = []
for line in x:
temp = ''.join(str(token) for token in line.lower())
doc2vec_data.append(temp)
File = open('doc2vec_data.txt', 'w',encoding="utf-8")
for item in doc2vec_data:
File.write("%s\n" % item)
sentences=gensim.models.doc2vec.TaggedLineDocument("doc2vec_data.txt")
d2v =gensim.models.Doc2Vec(sentences, dm=0,window = 5,
size=5,
iter = 100, workers=32,dbow_words=1,
alpha=2,min_aplha=0.5)
创建Numpy向量数组: 因为doc2vec模型不能直接用于keras序列模型。
vec=np.array([d2v.infer_vector(item) for item in x])
Keras顺序模型:
model=Sequential()
model.add(Embedding(2000,128,input_length=vec.shape[1]))
model.add(LSTM(200,dropout=0.2,recurrent_dropout=0.2))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
y:句子标签(0和1)
model.fit(vec,y,
batch_size=32,epochs=8,
verbose=1)
上面的代码给了我这个错误 -
InvalidArgumentError Traceback (most recent call last)
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in
_do_call(self, fn, *args)
1349 try:
-> 1350 return fn(*args)
1351 except errors.OpError as e:
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in
_run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1328 feed_dict, fetch_list, target_list,
-> 1329 status, run_metadata)
1330
~\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in
__exit__(self, type_arg, value_arg, traceback_arg)
472 compat.as_text(c_api.TF_Message(self.status.status)),
--> 473 c_api.TF_GetCode(self.status.status))
474 # Delete the underlying status object from memory otherwise it
stays alive
InvalidArgumentError: indices[0,0] = -19 is not in [0, 2000)
[[Node: embedding_1/Gather = Gather[Tindices=DT_INT32, Tparams=DT_FLOAT,
validate_indices=true,
_device="/job:localhost/replica:0/task:0/device:CPU:0"]
(embedding_1/embeddings/read, embedding_1/Cast)]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-34-3d0fc0b22a78> in <module>()
1 model.fit(vec,y,
2 batch_size=32,epochs=8,
----> 3 verbose=1)
InvalidArgumentError: indices[0,0] = -19 is not in [0, 2000)
[[Node: embedding_1/Gather = Gather[Tindices=DT_INT32, Tparams=DT_FLOAT,
validate_indices=true,
_device="/job:localhost/replica:0/task:0/device:CPU:0"]
(embedding_1/embeddings/read, embedding_1/Cast)]]
有人可以告诉我这是什么错误,我该如何解决?
答案 0 :(得分:0)
您已经将句子转换为向量并使用Keras模型重新尝试它。它抱怨你的嵌入层没有收到正确的索引,因为它已经嵌入了。假设你有vec.shape == (samples, doc2vec_vector_size)
,你需要删除嵌入,因为它已经嵌入了LSTM,因为你现在每个句子有1个向量而不是每个单词:
model = Sequential()
model.add(Dense(hidden_size, activation='relu', input_dim=doc2vec_vector_size))
model.add(Dense(1, activation='sigmoid'))