我附上了一个json数据链接供下载 -
目前我编写了以下函数,用于将每个级别的子级数据转换为组合数据框 -
def get_children(catMapping):
level4 = json_normalize(catMapping['SuccessResponse']['Body'],
['children', 'children', 'children', 'children', ['children']])
level3 = json_normalize(catMapping['SuccessResponse']['Body'],
['children', 'children', 'children', ['children']])
['children', 'children', ['children']])
level1 = json_normalize(catMapping['SuccessResponse']['Body'],
['children', ['children']])
level0 = json_normalize(catMapping['SuccessResponse']['Body'],
['children'])
combined = pd.concat([level0, level1, level2, level3,level4])
combined = combined.reset_index(drop=True)
return combined
看起来这不是推荐的方式,但我无法编写可以遍历每个级别的函数。
你能帮助我提供更好的功能吗?
答案 0 :(得分:2)
这是一个递归迭代所有项目的函数:
import pandas as pd
import ast
with open(r"data.json", "r") as f:
data = ast.literal_eval(f.read())
def nest_iter(items):
for item in items:
children_ids = [o["categoryId"] for o in item["children"]]
ret_item = item.copy()
ret_item["children"] = children_ids
yield ret_item
yield from nest_iter(item["children"])
df = pd.DataFrame(nest_iter(data['SuccessResponse']['Body']))
结果:
categoryId children leaf name var
....
4970 10001244 [] True Business False
4971 10001245 [] True Casual False
4972 10001246 [] True Fashion False
4973 10001247 [] True Sports False
4974 7756 [7761, 7758, 7757, 7759, 7760] False Women False
4975 7761 [] True Accessories False
4976 7758 [] True Business False
4977 7757 [] True Casual False
4978 7759 [] True Fashion False
4979 7760 [] True Sports False