我有一个关于从tensorflow.contrib.slim.nets的vgg中排除前两个图层的问题。
如您所知,tensorflow.contrib.slim.nets.vgg,
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
net = slim.fully_connected(net, 4096, scope='fc6')
net = slim.dropout(net, 0.5, scope='dropout6')
net = slim.fully_connected(net, 4096, scope='fc7')
net = slim.dropout(net, 0.5, scope='dropout7')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
return net
我想要的是输出 net = slim.fully_connected(net,4096,scope ='fc7'),而不是 net = slim.fully_connected(net,1000,activation_fn =无,范围='fc8')
那么无论如何都要从中删除dropout7和fc8?
这是一个使用tf.slim的vgg的简单代码;请让我知道如何放弃这个例子。
import tensorflow as tf
import tensorflow.contrib.slim.nets as nets
import cv2
import numpy as np
slim = tf.contrib.slim
vgg = nets.vgg
image = cv2.imread('girl.jpg')
image = cv2.resize(image, (224, 224))
image = np.reshape(image, (1, 224, 224, 3)).astype(float)
predictions, _ = vgg.vgg_16(image) # the 'predictions' is not I want.
答案 0 :(得分:1)
可以使用slim框架中定义的end_points
来实现:
vgg_graph = tf.Graph()
with vgg_graph.as_default():
images = tf.placeholder(tf.float32, shape=[None, 224, 224, 3])
with slim.arg_scope(vgg.vgg_arg_scope()):
outputs, end_points = vgg.vgg_16(images, is_training=False)
fc7 = end_points['vgg_16/fc7']
with tf.Session(graph=vgg_graph) as sess:
saver = tf.train.Saver()
saver.restore(sess, '/home/vijay/datasets/pre_trained_models/vgg_16.ckpt')
# pass images through the network
fc7_output = sess.run(fc7, feed_dict={images:np.random.normal(size=(1, 224, 224, 3))})
print(np.squeeze(fc7_output).shape)
#Output:(4096,)