我有一些信号如下:
我想通过线性插值去除两个峰值,所以我可以得到这样的结果:
所以这真的是一个具有挑战性的问题,可能不是一个明确的答案,但我只是想到一些看起来舒适,自然,尽可能多地捕捉细节的东西。
我尝试使用遮罩,但边缘非常嘈杂,并且遮罩的宽度通常远远超过穗的实际宽度。我也尝试过平滑,然后应用有限差分来检测边缘的起始和终止位置,但它实际上并不像它应该的那样准确。
我想知道是否有人有处理这个问题的经验?我应该使用什么算法?任何描述加工的文献?
对于这个关节数据集,要点在这里:
-0.0568
-0.0536
-0.0528
-0.0500
-0.0379
-0.0169
-0.0005
0.0127
0.0075
0.0133
0.0123
0.0130
0.0084
0.0126
0.0144
0.0030
0.0093
0.0168
0.0101
0.0096
0.0078
0.0117
0.0106
0.0138
0.0128
0.0059
0.0075
0.0062
0.0056
0.0017
0.0037
0.0173
0.0114
0.0143
0.0113
0.0117
0.0040
0.0118
0.0085
0.0079
0.0063
0.0152
0.0064
0.0024
0.0058
0.0041
0.0101
0.0086
0.0086
0.0154
0.0018
0.0130
0.0094
0.0094
0.0096
0.0103
0.0170
0.0081
0.0035
0.0138
0.0123
0.0031
0.0120
0.0039
0.0043
0.0063
0.0191
0.0023
0.0165
0.0174
0.0129
0.0135
0.0153
0.0100
0.0066
0.0135
0.0109
0.0038
0.0129
0.0084
0.0095
0.0109
0.0121
0.0077
0.0116
0.0128
0.0101
0.0158
0.0134
0.0042
0.0054
0.0063
0.0059
0.0136
0.0029
0.0139
0.0104
0.0215
0.0180
0.0153
0.0187
0.0138
0.0236
0.0190
0.0267
0.0209
0.0112
0.0108
0.0238
0.0280
0.0266
0.0300
0.0256
0.0278
0.0260
0.0263
0.0257
0.0334
0.0309
0.0301
0.0325
0.0280
0.0300
0.0286
0.0359
0.0317
0.0381
0.0348
0.0422
0.0389
0.0491
0.1754
0.4760
0.8146
1.0172
1.0757
0.9471
0.8509
0.7955
0.7526
0.7314
0.7092
0.7073
0.6906
0.6787
0.6654
0.6646
0.6553
0.6420
0.6385
0.6390
0.6373
0.6305
0.6216
0.6218
0.6212
0.6108
0.6161
0.6054
0.6106
0.6006
0.6032
0.6100
0.6006
0.5975
0.6042
0.6027
0.6044
0.6138
0.6106
0.6051
0.6084
0.6065
0.6212
0.6207
0.6306
0.6270
0.6484
0.6605
0.6742
0.6828
0.6972
0.7076
0.7062
0.6918
0.6905
0.6759
0.6459
0.6134
0.5989
0.5790
0.5663
0.5595
0.5609
0.5467
0.5442
0.5400
0.5317
0.5267
0.5182
0.5187
0.5101
0.4975
0.4951
0.4907
0.4855
0.4745
0.4505
0.4604
0.5814
0.7370
0.8355
0.9012
0.9498
0.9783
1.0188
1.0496
1.0727
1.1201
1.1639
1.2085
1.2465
1.2691
1.3170
1.3553
1.4211
1.4715
1.5169
1.5694
1.5963
1.6341
1.6722
1.7125
1.7388
1.7725
1.8040
1.8505
1.8817
1.9064
1.9337
1.9837
1.9992
2.0385
2.0719
2.1062
2.1415
2.1767
2.2151
2.2385
2.2427
2.2591
2.2856
2.3185
2.3572
2.3638
2.3905
2.4077
2.4429
2.4662
2.4841
2.4977
2.5204
2.5549
2.5709
2.5810
2.6063
2.6301
2.6245
2.6519
2.6594
2.6707
2.6836
2.7045
2.7642
2.8208
2.8278
2.8821
2.8950
2.9526
3.0908
3.1539
3.1935
3.1544
3.1317
3.1717
3.1677
3.1526
3.1489
3.1292
3.1129
3.1293
3.1561
3.1556
3.1857
3.1856
3.1327
3.1160
3.0868
3.1122
3.1407
3.1970
3.2136
3.2211
3.2376
3.2222
3.2521
3.3035
3.4006
3.5001
3.5602
3.5756
3.6020
3.6014
3.5830
3.5640
3.5016
3.4363
3.3618
3.3640
3.4059
3.4812
3.4943
3.5307
3.5735
3.5193
3.5079
3.5052
3.4986
3.4955
3.4303
3.3649
3.3260
3.2755
3.1902
3.0984
3.0574
3.0174
2.9852
2.9648
2.9462
2.9398
2.9393
2.9490
2.9268
2.9042
2.9143
2.9065
2.9340
3.0154
3.0141
3.0202
3.0782
3.1301
3.1803
3.2108
3.2176
3.2588
3.2822
3.3173
3.3732
3.3976
3.4492
3.4675
3.5090
3.5702
3.5230
3.4513
3.3371
3.2674
3.2867
3.3829
3.4563
3.5314
3.5805
3.6043
3.6157
3.6267
3.6450
3.6317
3.5860
3.4163
3.3502
3.3793
3.3572
3.5124
3.8337
4.2717
4.6394
4.8060
4.7245
4.5504
4.3687
4.3737
4.6887
5.4021
6.0749
6.5674
6.7279
6.8391
6.8456
6.8219
6.8410
6.7609
6.5246
5.7718
4.4415
3.5784
3.4720
3.3728
3.4125
3.5051
3.4689
3.2906
3.2217
3.1706
3.1218
3.3428
3.7802
4.5759
5.3222
5.6758
6.0151
6.1276
6.1647
6.0552
5.9937
5.9784
5.7171
5.0609
4.8232
4.2979
3.7390
3.3099
2.9529
2.6971
2.6021
2.5640
2.6019
2.6515
2.6531
2.6558
2.7166
2.7408
2.8190
2.8535
2.8639
2.8700
2.7703
2.6353
2.5842
2.5137
2.4497
2.3751
2.3382
2.1323
1.8490
1.6700
1.5507
1.4733
1.4242
1.3643
1.2997
1.2203
1.1462
1.0776
0.9962
0.8265
0.4876
0.1304
0.0341
0.0296
0.0263
0.0261
0.0247
0.0232
0.0256
0.0214
0.0232
0.0208
0.0205
0.0182
0.0186
0.0169
0.0236
0.0198
0.0157
0.0143
0.0179
0.0118
0.0136
0.0139
0.0115
0.0093
0.0096
0.0107
0.0132
0.0090
0.0074
0.0103
0.0071
0.0086
0.0069
0.0052
0.0069
0.0062
0.0115
0.0068
0.0179
0.0121
0.0092
0.0098
0.0138
0.0081
0.0055
0.0077
0.0048
0.0059
0.0052
0.0095
0.0087
0.0114
0.0036
0.0080
0.0110
0.0049
0.0079
0.0065
0.0080
0.0110
0.0059
0.0158
0.0146
0.0095
0.0045
0.0081
0.0116
0.0091
0.0080
0.0095
0.0105
0.0077
0.0098
0.0138
0.0069
0.0118
0.0087
0.0046
0.0056
0.0072
0.0136
0.0110
0.0054
0.0090
0.0147
0.0102
0.0066
0.0102
0.0092
0.0045
0.0089
0.0134
0.0222
0.0336
0.0362
0.0464
0.0354
0.0420
0.0445
0.0400
0.0338
0.0369
0.0441
0.0397
0.0383
0.0353
0.0319
0.0342
0.0366
0.0414
0.0401
0.0452
0.0507
0.0444
0.0358
0.0432
0.0394
0.0406
0.0441
0.0386
0.0410
0.0409
0.0330
0.0282
0.0186
0.0137
0.0103
0.0033
0.0101
0.0080
0.0141
0.0097
0.0102
0.0092
0.0094
0.0055
0.0119
0.0140
0.0116
0.0077
0.0148
0.0063
0.0021
0.0048
0.0033
0.0123
0.0109
0.0108
0.0168
0.0112
0.0046
0.0085
0.0068
0.0091
0.0096
0.0061
0.0063
0.0082
0.0084
0.0094
0.0070
0.0087
0.0042
0.0077
0.0060
0.0123
0.0127
0.0107
0.0019
0.0082
0.0051
0.0068
0.0064
0.0061
0.0057
0.0094
0.0162
0.0141
0.0165
0.0065
0.0121
0.0047
0.0120
0.0076
0.0050
0.0080
0.0139
0.0023
0.0139
0.0123
0.0087
0.0151
0.0060
0.0103
0.0039
0.0042
0.0043
-0.0011
0.0080
0.0028
0.0074
0.0042
0.0018
0.0087
0.0049
0.0076
0.0156
0.0076
0.0091
0.0056
0.0091
0.0075
0.0012
0.0056
0.0123
0.0137
0.0087
0.0025
0.0084
0.0104
0.0086
-0.0008
0.0072
0.0110
0.0096
0.0081
0.0126
0.0020
0.0098
0.0070
0.0041
0.0027
0.0075
0.0040
0.0069
0.0098
0.0180
0.0143
0.0182
0.0120
0.0003
-0.0011
0.0063
0.0104
0.0043
0.0128
0.0075
0.0051
0.0065
0.0063
0.0005
0.0097
0.0099
0.0084
0.0105
0.0017
0.0080
0.0140
0.0054
0.0048
答案 0 :(得分:0)
最简单的方法是删除超过给定阈值的点,而不替换它们。
您可以尝试删除表现出优于某个值的差异的点(似乎您应该只考虑问题特殊情况的正面差异),而不是替换它们;这可能需要多次擦除才能消除峰值。
如果这不起作用,则会有更复杂的问题。