答案 0 :(得分:0)
如果您对数据集rfe
进行分类,则会获得此表。看起来文章已经清理并重命名了一些列名,但就是这样。
library(caret)
data(mdrr)
mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
set.seed(1)
inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]
train <- mdrrDescr[ inTrain, ]
test <- mdrrDescr[-inTrain, ]
trainClass <- mdrrClass[ inTrain]
testClass <- mdrrClass[-inTrain]
set.seed(2)
ctrl <- rfeControl(functions = rfFuncs,method = "cv",number = 5, verbose = FALSE)
rf_profile <- rfe(train, trainClass,
ntree = 50,
rfeControl = ctrl)
rf_profile$results
包含您可以在表格中看到的结果。
rf_profile$results
Variables Accuracy Kappa AccuracySD KappaSD
1 4 0.7355696 0.4599432 0.06290770 0.1274150
2 8 0.7934494 0.5736408 0.08328405 0.1725036
3 16 0.8060759 0.6011138 0.05961418 0.1222687
4 61 0.8260759 0.6411303 0.07101790 0.1483737
如果你想要带有这些变量的名字你可以像这样得到它们
rf_profile$optVariables[rf_profile$results$Variables]
[1] "VRA1" "TI2" "Xt" "G.O..Cl."