我正在尝试编写代码来获取某个场景的概率。共有52张卡分为4个套装。从每堆中随机抽取1张卡片制作4张卡片组合,然后将这些卡片放回到它们的堆中。你如何计算组合只有1王的概率? 我尝试了以下但我认为我做错了
cards <- c(2:10,'J','Q', 'K','A')
v <- sample(rep(cards,1:13),1000,replace=T)
cat('The probability of getting a King is approximately:',sum(v=='K')/length(v),'\n')
答案 0 :(得分:1)
据我了解您的问题,您可以使用此代码解决问题。这适用于从每一堆中单张一张牌,或者在替换后随后给出的抽牌。如果您对多次抽奖的概率感兴趣,或者在没有替换的情况下进行后续抽奖,则不起作用。这不是基于重复抽样的计算方法。
所有可能的抽取组合,即每个堆中的国王或不是国王:
Hearts <- rep(c((rep("k",1)),(rep("n",1))),8)
Spades <- rep(c((rep("k",2)),(rep("n",2))),4)
Clubs <- rep(c((rep("k",4)),(rep("n",4))),2)
Diamonds <- rep(c((rep("k",8)),(rep("n",8))),1)
pile.possibilities <- data.frame(Hearts,Spades,Clubs,Diamonds)
并绘制每堆的概率:
pile.possibilities$H.prob <- ifelse (pile.possibilities$Hearts == "k", (1/13), (12/13))
pile.possibilities$S.prob <- ifelse (pile.possibilities$Spades == "k", (1/13), (12/13))
pile.possibilities$C.prob <- ifelse (pile.possibilities$Clubs == "k", (1/13), (12/13))
pile.possibilities$D.prob <- ifelse (pile.possibilities$Diamonds == "k", (1/13), (12/13))
每个组合的概率组合:
pile.possibilities$Combo.prob <- pile.possibilities$H.prob *
pile.possibilities$S.prob *
pile.possibilities$C.prob *
pile.possibilities$D.prob
确定你将拥有其中一种组合。
> sum(Pile.combo.prob)
[1] 1
过滤您感兴趣的组合:
pile.possibilities$one.king.combo <- paste(pile.possibilities$Hearts,pile.possibilities$Spades,pile.possibilities$Clubs,pile.possibilities$Diamonds,sep = "")
pile.possibilities$one.king.combo <- sapply(strsplit(pile.possibilities$one.king, NULL), function(x) paste(sort(x), collapse = ''))
one.king.probability<- sum(subset(pile.possibilities, one.king.combo == "knnn")$Combo.prob)
one.king.probability
[1] 0.2420083
#Final data frame used
> pile.possibilities
Hearts Spades Clubs Diamonds H.prob S.prob C.prob D.prob Combo.prob one.king.combo
1 k k k k 0.07692308 0.07692308 0.07692308 0.07692308 3.501278e-05 kkkk
2 n k k k 0.92307692 0.07692308 0.07692308 0.07692308 4.201534e-04 kkkn
3 k n k k 0.07692308 0.92307692 0.07692308 0.07692308 4.201534e-04 kkkn
4 n n k k 0.92307692 0.92307692 0.07692308 0.07692308 5.041840e-03 kknn
5 k k n k 0.07692308 0.07692308 0.92307692 0.07692308 4.201534e-04 kkkn
6 n k n k 0.92307692 0.07692308 0.92307692 0.07692308 5.041840e-03 kknn
7 k n n k 0.07692308 0.92307692 0.92307692 0.07692308 5.041840e-03 kknn
8 n n n k 0.92307692 0.92307692 0.92307692 0.07692308 6.050208e-02 knnn
9 k k k n 0.07692308 0.07692308 0.07692308 0.92307692 4.201534e-04 kkkn
10 n k k n 0.92307692 0.07692308 0.07692308 0.92307692 5.041840e-03 kknn
11 k n k n 0.07692308 0.92307692 0.07692308 0.92307692 5.041840e-03 kknn
12 n n k n 0.92307692 0.92307692 0.07692308 0.92307692 6.050208e-02 knnn
13 k k n n 0.07692308 0.07692308 0.92307692 0.92307692 5.041840e-03 kknn
14 n k n n 0.92307692 0.07692308 0.92307692 0.92307692 6.050208e-02 knnn
15 k n n n 0.07692308 0.92307692 0.92307692 0.92307692 6.050208e-02 knnn
16 n n n n 0.92307692 0.92307692 0.92307692 0.92307692 7.260250e-01 nnnn