我注意到当我运行像numpy.dot
这样的numpy函数时,我的机器的4个内核将忙于完成工作。这意味着,不知何故,numpy自动理解它可以并行化某些计算。但是,我的机器上实际上有8个内核,所以我想告诉numpy使用它们。
你知道怎么做吗?
我已按照Limit number of threads in numpy中的说明进行操作,但它们无效。
我报告下面numpy.show_config()
的输出:
lapack_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/home/anfri/anaconda2/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/home/anfri/anaconda2/include']
blas_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/home/anfri/anaconda2/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/home/anfri/anaconda2/include']
lapack_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/home/anfri/anaconda2/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/home/anfri/anaconda2/include']
blas_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/home/anfri/anaconda2/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/home/anfri/anaconda2/include']