我需要使用function dateDiffToString(a, b){
// make checks to make sure a and b are not null
// and that they are date | integers types
diff = Math.abs(a - b);
ms = diff % 1000;
diff = (diff - ms) / 1000
ss = diff % 60;
diff = (diff - ss) / 60
mm = diff % 60;
diff = (diff - mm) / 60
hh = diff % 24;
days = (diff - hh) / 24
return days + ":" + hh+":"+mm+":"+ss+"."+ms;
}
var today = new Date()
var yest = new Date()
yest = yest.setDate(today.getDate()-1)
console.log(dateDiffToString(yest, today))
中的MultiVariateNormal
分布但是在最新版本的Tensorflow中,上述分发不可用,导致错误
有人可以指出哪个可用的分布将采用均值和西格玛,并给出多变量正态分布。
答案 0 :(得分:0)
tf.contrib.distributions.MultivariateNormalFullCovariance
defines the Multivariate Normal distribution that is parameterized by the
表示向量(mu)and the
协方差矩阵。
一个例子,
# Let mean vector and co-variance be:
mu = [1., 2]
cov = [[ 1, 3/5],[ 3/5, 2]]
#Multivariate Normal distribution
gaussian = tf.contrib.distributions.MultivariateNormalFullCovariance(
loc=mu,
covariance_matrix=cov)
# Generate a mesh grid to plot the distributions
X, Y = tf.meshgrid(tf.range(-3, 3, 0.1), tf.range(-3, 3, 0.1))
idx = tf.concat([tf.reshape(X, [-1, 1]), tf.reshape(Y,[-1,1])], axis =1)
prob = tf.reshape(gaussian.prob(idx), tf.shape(X))
with tf.Session() as sess:
p = sess.run(prob)
m, c = sess.run([gaussian.mean(), gaussian.covariance()])
# m is [1., 2.]
# c is [[1, 0.6], [0.6, 2]]