使用pyspark从字典中映射数据框中的值

时间:2018-05-13 23:36:23

标签: python apache-spark pyspark

我想知道如何映射数据框中特定列的值。

我有一个类似于:

的数据框
df = sc.parallelize([('india','japan'),('usa','uruguay')]).toDF(['col1','col2'])

+-----+-------+
| col1|   col2|
+-----+-------+
|india|  japan|
|  usa|uruguay|
+-----+-------+

我有一个字典,我想要映射值。

dicts = sc.parallelize([('india','ind'), ('usa','us'),('japan','jpn'),('uruguay','urg')])

我想要的输出是:

+-----+-------+--------+--------+
| col1|   col2|col1_map|col2_map|
+-----+-------+--------+--------+
|india|  japan|     ind|     jpn|
|  usa|uruguay|      us|     urg|
+-----+-------+--------+--------+

我尝试过使用lookup function但它不起作用。它抛出错误SPARK-5063。以下是我失败的方法:

def map_val(x):
    return dicts.lookup(x)[0]

myfun = udf(lambda x: map_val(x), StringType())

df = df.withColumn('col1_map', myfun('col1')) # doesn't work
df = df.withColumn('col2_map', myfun('col2')) # doesn't work

2 个答案:

答案 0 :(得分:11)

我认为更简单的方法就是使用简单的dictionarydf.withColumn

from itertools import chain
from pyspark.sql.functions import create_map, lit

simple_dict = {'india':'ind', 'usa':'us', 'japan':'jpn', 'uruguay':'urg'}

mapping_expr = create_map([lit(x) for x in chain(*simple_dict.items())])

df = df.withColumn('col1_map', mapping_expr[df['col1']])\
       .withColumn('col2_map', mapping_expr[df['col2']])

df.show(truncate=False)

答案 1 :(得分:6)

udf方式

我建议您将元组列表更改为dicts 并将广播更改为在udf中使用

dicts = sc.broadcast(dict([('india','ind'), ('usa','us'),('japan','jpn'),('uruguay','urg')]))

from pyspark.sql import functions as f
from pyspark.sql import types as t
def newCols(x):
    return dicts.value[x]

callnewColsUdf = f.udf(newCols, t.StringType())

df.withColumn('col1_map', callnewColsUdf(f.col('col1')))\
    .withColumn('col2_map', callnewColsUdf(f.col('col2')))\
    .show(truncate=False)

应该给你

+-----+-------+--------+--------+
|col1 |col2   |col1_map|col2_map|
+-----+-------+--------+--------+
|india|japan  |ind     |jpn     |
|usa  |uruguay|us      |urg     |
+-----+-------+--------+--------+

加入方式(比udf方式慢)

您所要做的就是将dicts rdd更改为dataframe 使用两个连接 aliasings ,如下所示

df = sc.parallelize([('india','japan'),('usa','uruguay')]).toDF(['col1','col2'])

dicts = sc.parallelize([('india','ind'), ('usa','us'),('japan','jpn'),('uruguay','urg')]).toDF(['key', 'value'])

from pyspark.sql import functions as f
df.join(dicts, df['col1'] == dicts['key'], 'inner')\
    .select(f.col('col1'), f.col('col2'), f.col('value').alias('col1_map'))\
    .join(dicts, df['col2'] == dicts['key'], 'inner') \
    .select(f.col('col1'), f.col('col2'), f.col('col1_map'), f.col('value').alias('col2_map'))\
    .show(truncate=False)

应该给你相同的结果