我试图在谷歌Colaboratory笔记本上用keras
/ tensorflow进行转学习/瓶颈。我的问题是准确率不超过6%(Kaggle的狗品种挑战,120个类,用datagen.flow_from_directory
生成的数据)
以下是我的代码,我有什么遗漏?
tr_model=ResNet50(include_top=False,
weights='imagenet',
input_shape = (224, 224, 3),)
datagen = ImageDataGenerator(rescale=1. / 255)
#### Training ####
train_generator = datagen.flow_from_directory(train_data_dir,
target_size=(image_size,image_size),
class_mode=None,
batch_size=batch_size,
shuffle=False)
bottleneck_features_train = tr_model.predict_generator(train_generator)
train_labels = to_categorical(train_generator.classes , num_classes=num_classes)
#### Validation ####
validation_generator = datagen.flow_from_directory(validation_data_dir,
target_size=(image_size,image_size),
class_mode=None,
batch_size=batch_size,
shuffle=False)
bottleneck_features_validation = tr_model.predict_generator(validation_generator)
validation_labels = to_categorical(validation_generator.classes, num_classes=num_classes)
#### Model creation ####
model = Sequential()
model.add(Flatten(input_shape=bottleneck_features_train.shape[1:]))
model.add(Dense(num_class, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(bottleneck_features_train, train_labels,
epochs=30,
batch_size=batch_size,
validation_data=(bottleneck_features_validation, validation_labels))
我得到val_acc = 0.0592
当我将ResNet50与最后一层一起使用时,得分为82%。
任何人都可以发现我的代码有什么问题。
答案 0 :(得分:1)
禁止重新缩放并添加预处理帮助很多。
这些修改极大地帮助了:
from keras.applications.resnet50 import preprocess_input
datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
我现在的准确度为80%