尝试将df1和df2与“Cntr No'”进行比较。并且df2 ['人工成本',材料成本','估算货币金额']中的任何一列中的值必须与df1的总计匹配
例如df1 OOLU 3868088与df2 OOLU 3868088以及df1" 28"的总值匹配。符合df2"人工成本"价值' 28'。
DF:
df1 = pd.DataFrame({'Cntr No': ['OOLU 3868088','OOLU 3868088','OOLU 3868088','TRIU 0625840','TRIU 0625840','TRIU 0625840','TRIU 1234567','OOLU 6232016','OOLU 0981231','OOLU 1212444'],
'Total': [12,28,48,119,82.5,11.0,18.0,11.0,13.0,10.0]})
df2 = pd.DataFrame({'Cntr No': ['OOLU 3868088','OOLU 3868088','OOLU 3868088','TRIU 0625840','TRIU 0625840','TRIU 0625840','TRIU 1234567'],
'Labour Cost': [0.0,0.0,28.0,0.0,54.0,0.0,0.0],
'Material Cost':[0.00,12.0,58.91,82.5,54.0,0.0,16.0],
'Amount in Estimate Currency':[48.00,12.00,87.81,82.5,119.0,12.0,16.0]})
预期产出:
Cntr No Total Tally_with_df2
0 OOLU 3868088 12.0 Yes
1 OOLU 3868088 28.0 Yes
2 OOLU 3868088 48.0 Yes
3 TRIU 0625840 119.0 Yes
4 TRIU 0625840 82.5 Yes
5 TRIU 0625840 11.0 No
6 TRIU 1234567 18.0 No
使用过的代码:这是我尝试过的以下代码,但无法满足我的要求
cols = ['Labour Cost', 'Material Cost', 'Amount in Estimate Currency']
d = {k: set(v.values()) for k, v in \
df_co.set_index('Cntr No')[cols].to_dict(orient='index').items()}
df['Tally'] = [j in d.get(i, set()) for i, j in zip(df['Cntr No'], df['Total'])]
df['Tally'] = df['Tally'].map({True: 'Yes', False: 'No'})
DF1:
Cntr No object
Serviced By object
Location object
WO No object
WASH - CHEMICAL float64
PTI - CHILL float64
WASHING CONTAINER AGENT float64
WASH - CHEMICAL AGENT float64
WASHING CONTAINER -AGENT float64
BUNDLING/UNBUNDLING OF FR float64
PTI - AUTO float64
PTI float64
Struct Repair - Labour float64
Struct Repair - Material float64
Machy Repair - Labour float64
Total float64
Vendor object
Sz object
Ty object
CO object
WO Date object
WO ID object
DF2:
Cntr No object
Equipment Size/type Group Code object
Labour Cost float64
Material Cost float64
Amount in Estimate Currency float64
Remarks object
答案 0 :(得分:0)
IIUC,我们可以为df2为每个唯一的Cntr编号创建一个groupby
数据。
## this is grouped data
to_remove = df2.select_dtypes(['object']).columns.values.tolist()
df3 = (df2
.groupby('Cntr No')
.apply(lambda df: set(np.concatenate(df.loc[:, df.columns.difference(to_remove)].values))))
## df3 looks like this - using set for faster speed
print(df3)
Cntr No
OOLU 3868088 {0.0, 12.0, 48.0, 87.81, 58.91, 28.0}
TRIU 0625840 {0.0, 12.0, 82.5, 54.0, 119.0}
TRIU 1234567 {16.0, 0.0}
## this function ensures all cases are handles
def get_value(x, data):
if x['Cntr No'] not in data.index:
return 'Not Found'
else:
if x['Total'] in data[x['Cntr No']]:
return 'Yes'
else:
return 'No'
## next we do a simple look-up
df1['Tally_with_df2'] = df1.apply(lambda x: get_value(x, df3), axis=1)
print(df1)
Cntr No Total Tally_with_df2
0 OOLU 3868088 12.0 Yes
1 OOLU 3868088 28.0 Yes
2 OOLU 3868088 48.0 Yes
3 TRIU 0625840 119.0 Yes
4 TRIU 0625840 82.5 Yes
5 TRIU 0625840 11.0 No
6 TRIU 1234567 18.0 No