我有django休息应用程序和模型任务。我是自然处理的新手,我想建立一个返回名词和动词列表的函数。它看起来像这样:
@api_view(['GET'])
def noun_verb_list(request):
nouns = []
verbs = []
"""
List all nouns and verbs from available tasks
"""
if request.query_params.get('projectId'):
# get a specific project
projectId = request.query_params.get('projectId')
project = Project.objects.get(id=projectId)
tasks = project.project_tasks.all()
# extract nouns and verbs from tasks here
return Response(# return appropriate nouns)
有人可以帮我构建这个功能吗?什么导入和逻辑?
答案 0 :(得分:1)
使用nltk
pos-tagger
>>> import nltk
>>> text = nltk.word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> pos_tagged = nltk.pos_tag(text)
>>> pos_tagged
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
>>> nouns = filter(lambda x:x[1]=='NN',pos_tagged)
>>> nouns
[('refuse', 'NN'), ('permit', 'NN')]
名词由NN
标记,动词由VB
标记,因此您可以相应地使用它们。
注意:强>
如果您没有使用nltk设置/下载punkt
和averaged_perceptron_tagger
,则可能需要使用以下命令:
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')