我有一个数据帧,我想在spark中插入Postgresql。在spark中,DateTimestamp列是字符串格式。在postgreSQL中,它是没有时区的TimeStamp。
在日期时间列中插入数据库时出错。我确实尝试更改数据类型,但插入仍然出错。我无法弄清楚为什么演员阵容不起作用。如果我将相同的插入字符串粘贴到PgAdmin并运行,则insert语句运行正常。
import java.text.SimpleDateFormat;
import java.util.Calendar
object EtlHelper {
// Return the current time stamp
def getCurrentTime() : String = {
val now = Calendar.getInstance().getTime()
val hourFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
return hourFormat.format(now)
}
}
在另一个档案中
object CreateDimensions {
def createDimCompany(spark:SparkSession, location:String, propsLocation :String):Unit = {
import spark.implicits._
val dimCompanyStartTime = EtlHelper.getCurrentTime()
val dimcompanyEndTime = EtlHelper.getCurrentTime()
val prevDimCompanyId = 2
val numRdd = 27
val AuditDF = spark.createDataset(Array(("dim_company", prevDimCompanyId,numRdd,dimCompanyStartTime,dimcompanyEndTime))).toDF("audit_tbl_name","audit_tbl_id","audit_no_rows","audit_tbl_start_date","audit_tbl_end_date")//.show()
AuditDF.withColumn("audit_tbl_start_date",AuditDF.col("audit_tbl_start_date").cast(DataTypes.TimestampType))
AuditDF.withColumn("audit_tbl_end_date",AuditDF.col("audit_tbl_end_date").cast(DataTypes.TimestampType))
AuditDF.printSchema()
}
}
root
|-- audit_tbl_name: string (nullable = true)
|-- audit_tbl_id: long (nullable = false)
|-- audit_no_rows: long (nullable = false)
|-- audit_tbl_start_date: string (nullable = true)
|-- audit_tbl_end_date: string (nullable = true)
这是我得到的错误
INSERT INTO etl.audit_master ("audit_tbl_name","audit_tbl_id","audit_no_rows","audit_tbl_start_date","audit_tbl_end_date") VALUES ('dim_company',27,2,'2018-05-02 12:15:54','2018-05-02 12:15:59') was aborted: ERROR: column "audit_tbl_start_date" is of type timestamp without time zone but expression is of type character varying
Hint: You will need to rewrite or cast the expression.
感谢任何帮助。
谢谢
答案 0 :(得分:2)
AuditDF.printSchema()
正在使用原始AuditDF
数据框,因为您未通过分配保存.withColumn
的转换。 数据帧是不可变对象,可以转换为另一个数据帧,但不能自行更改。因此,您始终需要一个作业来保存您已应用的转换。
所以正确的方法是分配以保存更改
val transformedDF = AuditDF.withColumn("audit_tbl_start_date",AuditDF.col("audit_tbl_start_date").cast(DataTypes.TimestampType))
.withColumn("audit_tbl_end_date",AuditDF.col("audit_tbl_end_date").cast("timestamp"))
transformedDF.printSchema()
您将看到更改
root
|-- audit_tbl_name: string (nullable = true)
|-- audit_tbl_id: integer (nullable = false)
|-- audit_no_rows: integer (nullable = false)
|-- audit_tbl_start_date: timestamp (nullable = true)
|-- audit_tbl_end_date: timestamp (nullable = true)
.cast(DataTypes.TimestampType)
和.cast("timestamp")
都是相同的
答案 1 :(得分:1)
问题的根源是@Ramesh提到的,即您没有将AuditDF中的更改分配给新值(val)请注意,数据框和您分配给它的值都是不可变的(即auditDF定义为val,因此也无法更改
另一件事是你不需要重新发明轮子并使用EtlHelper spark内置函数为你提供当前时间的时间戳:
import org.apache.spark.sql.functions._
val AuditDF = spark.createDataset(Array(("dim_company", prevDimCompanyId,numRdd)))
.toDF("audit_tbl_name","audit_tbl_id","audit_no_rows")
.withColumn("audit_tbl_start_date"current_timestamp())
.withColumn("audit_tbl_end_date",current_timestamp())