我有一个闪亮的应用程序,它采用数据框,并从group_by
应用dplyr
。我可以让它接受一个组,但我希望selectInput
接受多个分组变量。
我可以通过添加另一个selectInput
来解决此问题,然后将其传递给group_by
语句,但我希望将其扩展为任意数量的变量。因此,我需要单个selectInput
来接受多个参数。
仅添加multiple = TRUE
不会以group_by
理解的方式传递变量,而this answer我现在无法适应group_by_
已被弃用
注意,
此应用的完整版使用fileInput
,而非硬编码数据集,因此调用renderUI
和reactive
library(shiny)
library(DT)
library(dplyr)
ui <- fluidPage(
titlePanel("app"),
sidebarLayout(
sidebarPanel(
uiOutput("groups")
),
mainPanel(
DT::dataTableOutput("summary")
)
)
)
server <- function(input, output) {
mydata <- reactive({structure(list(School = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L), .Label = c("School1", "School2"), class = "factor"),
Town = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L,
2L, 1L), .Label = c("Levin", "Wellington"), class = "factor"),
Income = c(6314L, 3546L, 3541L, 846684L, 231123L, 564564L,
545L, 1325L, 484L, 51353L, 465546L, 564546L)), .Names = c("School",
"Town", "Income"), class = "data.frame", row.names = c(NA, -12L
))})
output$groups <- renderUI({
df <- mydata()
selectInput(inputId = "grouper", label = "Group variable", choices = names(df), multiple = TRUE)
})
summary_data <- reactive({
req(input$grouper)
mydata() %>%
dplyr::group_by(!!rlang::sym(input$grouper)) %>%
dplyr::summarise(mean_income = mean(Income), na.rm = TRUE)
})
output$summary <- DT::renderDataTable({
DT::datatable(summary_data())
})
}
shinyApp(ui, server)
答案 0 :(得分:2)
正如Renu在评论中指出的那样,答案就是将!!
替换为!!!
,将sym
替换为syms
(这允许group_by
接受变量列表,而不是单个变量。
library(shiny)
library(DT)
library(dplyr)
ui <- fluidPage(
titlePanel("app"),
sidebarLayout(
sidebarPanel(
uiOutput("groups")
),
mainPanel(
DT::dataTableOutput("summary")
)
)
)
server <- function(input, output) {
mydata <- reactive({structure(list(School = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L), .Label = c("School1", "School2"), class = "factor"),
Town = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L,
2L, 1L), .Label = c("Levin", "Wellington"), class = "factor"),
Income = c(6314L, 3546L, 3541L, 846684L, 231123L, 564564L,
545L, 1325L, 484L, 51353L, 465546L, 564546L)), .Names = c("School",
"Town", "Income"), class = "data.frame", row.names = c(NA, -12L
))})
output$groups <- renderUI({
df <- mydata()
selectInput(inputId = "grouper", label = "Group variable", choices = names(df), multiple = TRUE)
})
summary_data <- reactive({
req(input$grouper)
mydata() %>%
dplyr::group_by(!!!rlang::syms(input$grouper)) %>%
dplyr::summarise(mean_income = mean(Income), na.rm = TRUE)
})
output$summary <- DT::renderDataTable({
DT::datatable(summary_data())
})
}
shinyApp(ui, server)