当我运行以下代码时,以下错误会中断培训过程。
ValueError:没有为" embedding_15_input"提供数据。需要每个密钥的数据:[' embedding_15_input']
我想提一下,我想构建一个带有multi_lable输出的lstm网络(11个标签)。
以下是生成模型结构的函数:
def lstm_twiter(n_input,n_out,input_dim,units_activation =' tanh',batch_size = 20):
model = Sequential()
embedding_size_out = min(50, input_dim/2)
model.add(Embedding( input_length = n_input, output_dim = embedding_size_out\
, input_dim = input_dim, mask_zero = True))
model.add(Bidirectional(LSTM(100,activation=units_activation)))
model.add(Dropout(0.5))
model.add(Dense(n_out,activation="sigmoid"))
callsback = EarlyStopping(patience =2 )
dict_1={'callbacks':[callsback],'batch_size':batch_size}
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
return(model, dict_1)
以下是我的称呼方式:
matrix_input_train, matrix_output_train, matrix_input_dev,\
matrix_output_dev, matrix_input_test, matrix_output_test,size_of_vocab= \
preprocessing (txt_file_train, txt_file_dv)
n_input = matrix_input_train.shape[1]
input_dim = size_of_vocab
n_out = matrix_output_train.shape[1]
model, dict_1=lstm_twiter(n_input, n_out, input_dim,units_activation = 'tanh'\
, batch_size =20 )
dict_1.update(x=matrix_input_train,y=matrix_output_train,epochs=10, \
validation_data=(matrix_input_dev, matrix_output_dev))
model.fit(dict_1)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_17 (Embedding) (None, 56, 50) 1103150
_________________________________________________________________
bidirectional_15 (Bidirectio (None, 200) 120800
_________________________________________________________________
dropout_15 (Dropout) (None, 200) 0
_________________________________________________________________
dense_14 (Dense) (None, 11) 2211
=================================================================
Total params: 1,226,161
Trainable params: 1,226,161
Non-trainable params: 0
______________________________________________________
答案 0 :(得分:1)
我在3个案例中遇到此错误(但在R中而不在Python中):
请检查以上所有内容。
也许R中的这段代码可以提供帮助:
library(keras)
#The network should identify the rule that a row sum greater than 1.5 should yield an output of 1
my_x=matrix(data=runif(30000), nrow=10000, ncol=3)
my_y=ifelse(rowSums(my_x)>1.5,1,0)
my_y=to_categorical(my_y, 2)
model = keras_model_sequential()
layer_dense(model,units = 2000, activation = "relu", input_shape = c(3))
layer_dropout(model,rate = 0.4)
layer_dense(model,units = 50, activation = "relu")
layer_dropout(model,rate = 0.3)
layer_dense(model,units = 2, activation = "softmax")
compile(model,loss = "categorical_crossentropy",optimizer = optimizer_rmsprop(),metrics = c("accuracy"))
history <- fit(model, my_x, my_y, epochs = 5, batch_size = 128, validation_split = 0.2)
evaluate(model,my_x, my_y,verbose = 0)
predict_classes(model,my_x)