下面的回调我的Keras模型在训练期间提供以下输出。
from keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint('main_model_weights_new.h5', monitor='val_loss', verbose=1,
save_best_only=False, mode='auto',save_weights_only=True)
import pandas
pandas.DataFrame(model.fit(trainX, trainY, epochs=200, batch_size=100,
validation_data=(testX, testY),
callbacks= [checkpoint]).history).to_csv("history.csv")
我期待看到火车损失,火车准确性,valid_loss和valid_accuracy。但如下图所示,似乎还有一个train_loss和train精度,输出以及有效损失和有效准确度。任何人都可以解释一下这个被认为是train_loss的人吗?
输出: Epoch 1/200 2800/2810 [============================&gt ;.] - ETA:0s - 损失:29.7255 - dense_2_loss_1 :3.9492 - dense_2_loss_2:5.5785 - dense_2_loss_3:5.5198 - dense_2_loss_4:5.6908 - dense_2_loss_5: 4.9863 - dense_2_loss_6:4.0008 - dense_2_acc_1:0.1711 - dense_2_acc_2:0.0836 - dense_2_acc_3:0.0821 - dense_2_acc_4:0.1200 - dense_2_acc_5:0.2393 - dense_2_acc_6:0.4171Epoch 00000:将模型保存到main_model_weights_new.h5 2810/2810 [==============================] - 62s - 损失:29.7213 - dense_2_loss_1:3.9471 - dense_2_loss_2:5.5732 - dense_2_loss_3: 5.5226 - dense_2_loss_4:5.6907 - dense_2_loss_5:4.9885 - dense_2_loss_6:3.9992 - dense_2_acc_1:0.1715 - dense_2_acc_2:0.0843 - dense_2_acc_3:0.0822 - dense_2_acc_4:0.1199 - dense_2_acc_5:0.2388 - dense_2_acc_6:0.4167 - val_loss:31.5189 - val_dense_2_loss_1:3.6305 - val_dense_2_loss_2:6.3004 - val_dense_2_loss_3:5.9689 - val_dense_2_loss_4:5.5387 - val_dense_2_loss_5:4.9914 - val_dense_2_loss_6:5.0890 - val_dense_2_acc_1:0.2982 - val_dense_2_acc_2:0.0351 - val_dense_2_acc_3:0.0351 - val_dense_2_acc_4:0.1228 - val_dense_2_acc_5:0.2456 - val_dense_2_acc_6:0.4035 Epoch 2/200