我正在编写一个函数,我希望尽可能使用Cython将其转换为C.为此,我需要使用线性代数运算。这是我的功能。 编辑:我学到的教训是尝试在循环之外处理线性代数,这在很大程度上是我能够做到的。否则,请使用LAPACK / BLAS包装或编写自己的功能。
import numpy as np
from scipy.stats import multivariate_normal as mv
import itertools
def llf(data, rho, mu, sigma, A, V, n):
'''evaluate likelihood by guass-hermite quadrature
Parameters
----------
data : array
N x J matrix, columns are measurements
rho : array
length L vector of weights for mixture of normals
mu : array
L x K vector of means of mixture of normals
sigma : array
K x L*K matrix of variance matrices for mixture of normals
A : array
J x (K + 1) matrix of loadings
V : array
J x J variance matrix of measurement errors
n : int
number of sample points for quadrature
'''
N = data.shape[0]
L, K = mu.shape
# getting weights and sample points for approximating integral
v, w = np.polynomial.hermite.hermgauss(n)
totllf = 0
for i in range(N):
M_i = data[i, :]
totllf_i = 0
for l in range(L):
rho_l = rho[l]
sigma_l = sigma[:, K*l:K*(l+1)]
mu_l = mu[l, :]
chol_l = np.linalg.cholesky(sigma_l)
for ix in itertools.product(*(list(range(n)) for k in range(K))):
wt = np.prod(w[list(ix)])
pt = np.sqrt(2)*chol_l.dot(v[list(ix)]) + mu_l
totllf_i += wt*rho_l*mv.pdf(M_i, A[:, 0] + A[:, 1:].dot(pt), V)
totllf += np.log(totllf_i)
return totllf
为了实现这一点,我需要具有矩阵乘法,转置,行列式,矩阵逆和cholesky分解的函数。我看过some posts使用BLAS
函数,但我真的不清楚如何使用这些函数。
编辑04/29/18
正如所建议的那样,我采用了内存视图方法并在循环之前初始化了所有内容。我的新功能写成
def llf_c(double[:, ::1] data, double[::1] rho, double[:, ::1] mu,
double[:, ::1] sigma, double[:, ::1] A, double[:, ::1] V, int n):
'''evaluate likelihood by guass-hermite quadrature
Parameters
----------
data : array
N x J matrix, columns are measurements
rho : array
length L vector of weights for mixture of normals
mu : array
L x K vector of means of mixture of normals
sigma : array
K x L*K matrix of variance matrices for mixture of normals
A : array
J x (K + 1) matrix of loadings
V : array
J x J variance matrix of measurement errors
n : int
number of sample points for quadrature
'''
cdef Py_ssize_t N = data.shape[0], J = data.shape[1], L = mu.shape[0], K = mu.shape[1]
# initializing indexing variables
cdef Py_ssize_t i, l, j, k
# getting weights and sample points for approximating integral
v_a, w_a = np.polynomial.hermite.hermgauss(n)
cdef double[::1] v = v_a
cdef double[::1] w = w_a
cdef double[::1] v_ix = np.zeros(K, dtype=np.float)
# initializing memory views for cholesky decomposition of sigma matrices
sigma_chol_a = np.zeros((K, L*K), dtype=np.float)
for l in range(L):
sigma_chol_a[:, K*l:K*(l+1)] = np.linalg.cholesky(sigma[:, K*l:K*(l+1)])
cdef double[:, ::1] sigma_chol = sigma_chol_a
# intializing V inverse and determinant
cdef double[:, ::1] V_inv = np.linalg.inv(V)
cdef double V_det = np.linalg.det(V)
# initializing memoryviews for work matrices
cdef double[::1] work_K = np.zeros(K, dtype=np.float)
cdef double[::1] work_J = np.zeros(J, dtype=np.float)
# initializing memoryview for quadrature points
cdef double[::1] pt = np.zeros(K, dtype=np.float)
# initializing memorview for means for multivariate normal
cdef double[::1] loc = np.zeros(J, dtype=np.float)
# initializing values for loop
cdef double[::1] totllf = np.zeros(N, dtype=np.float)
cdef double wt, pdf_init = 1./sqrt(((2*pi)**J)*V_det)
cdef int[:, ::1] ix_vals = np.vstack(itertools.product(*(list(range(n)) for k in range(K)))).astype(np.int32)
cdef Py_ssize_t ix_len = ix_vals.shape[0]
for ix_row in range(ix_len):
ix = ix_vals[ix_row]
# weights and points for quadrature
wt = 1.
for k in range(K):
wt *= w[ix[k]]
v_ix[k] = v[ix[k]]
for l in range(L):
# change of variables
dotmv_c(sigma_chol[:, K*l:K*(l+1)], v_ix, work_K)
for k in range(K):
pt[k] = sqrt(2)*work_K[k]
addvv_c(pt, mu[l, :], pt)
for i in range(N):
# generating demeaned vector for multivariate normal pdf
dotmv_c(A[:, 1:], pt, work_J)
addvv_c(A[:, 0], work_J, work_J)
for j in range(J):
loc[j] = data[i, j] - work_J[j]
# performing matrix products in exponential
# print(wt, rho[l], np.asarray(work_J))
dotvm_c(loc, V_inv, work_J)
totllf[i] += wt*rho[l]*pdf_init*exp(-0.5*dotvv_c(work_J, loc))
return np.log(np.asarray(totllf)).sum()
dotvm_c
,dotmv_c
和addvv_c
是向量和矩阵,矩阵和向量的性能矩阵乘法以及两个向量的元素相加的函数。我也在Cython中写过这些,但为了简洁起见,我不包括这些内容。我不再包装任何LAPACK函数,因为我在循环之前使用numpy执行所有其他线性代数。我还有一些问题。为什么循环中仍然有黄色? (见下面的简介)。我认为现在一切都应该在C中。另外,如果您有任何其他基于新实施的建议,请告知我们。
例如,在第221行,我在编译时收到此消息:“应键入索引以便更有效地访问。”但我以为我输入了索引k。此外,由于addvv_c
显示为黄色,我将在下面显示它的定义。
cpdef void addvv_c(double[:] a, double[:] b, double[:] out):
'''add two vectors elementwise
'''
cdef Py_ssize_t i, n = a.shape[0]
for i in range(n):
out[i] = a[i] + b[i]
答案 0 :(得分:2)
关于优化的Cython / BLAS功能的一些小问题:
ipiv_a = np.zeros(n).astype(np.int32)
cdef int[::1] ipiv = ipiv_a
可以有两个简单的改进:它不必经过一个临时变量,你可以直接创建一个类型为np.int32
的数组,而不是创建一个不同类型的数组然后进行转换: / p>
cdef int[::1] ipiv = np.zeros(n,dtype=np.int32)
Simiarly,在两个功能中,您可以通过执行更少的步骤来初始化B
cdef double[:, ::1] B = A.copy()
对于临时变量(如Fortran工作区),第二个(更重要的)更改为to use C arrays。我仍然将返回值保存为numpy数组,因为引用计数和将它们发送回Python的能力非常非常有用。
cdef double* work = <double*>malloc(n*n*sizeof(double))
try:
# rest of function
finally:
free(work)
您需要从malloc
隐藏free
和libc.stdlib
。 try: ... finally:
确保正确释放内存。不要过于夸张 - 例如,如果不明显在哪里取消分配C数组,那么只需使用numpy。
要查看的最后一个选项是没有返回值,而是修改输入:
cdef void inv_c(double[:,::1] A, double[:,::1] B):
# check that A and B are the right size, then just write into B
# ...
这样做的好处是,如果你需要在具有相同大小输入的循环中调用它,那么你只需要为整个循环进行一次分配。你可以扩展它以包括工作数组,虽然这可能有点复杂。