当他们拥有相同的姓名,姓氏和名字时,我会尝试匹配这些人,并保留ID的最小数值。
我在下面创建了一个测试数据库(比我的实际数据集小得多)并编写了一个嵌套的for循环,看起来它正在做它应该做的事情。
但它在较大的数据集上很慢。
我对应用函数相对较新,但它们在应用函数方面似乎比数据争论更直观。
对于我在这里做的事情,有什么更有效的选择?我确信有一个简单的解决方案可以让我在这里摇头询问,但我不会来这里。
dta.test<- NULL
dta.test$Person_id <- c(1,2,3,4,5,6,7,8,9,10, 11)
dta.test$FirstName <- c("John", "James", "John", "Alex", "Alexander", "Jonathan", "John", "Alex", "James", "John", "John")
dta.test$LastName <- c("Smith", "Jones", "Jones", "Jones", "Jones", "Smith", "Jones", "Smith", "Johnson", "Smith", "Smith")
dta.test$DOB <- c("2001-01-01", "2002-01-01", "2003-01-01", "2004-01-01", "2004-01-01", "2001-01-01", "2003-01-01", "2006-01-01", "2006-01-01", "2001-01-01", "2009-01-01")
dta.test$Actual_ID <- c(1, 2, 3, 4, 5, 6, 3, 8, 9, 1, 11)
dta.test <- as.data.frame(dta.test)
for(i in unique(dta.test$FirstName))
for(j in unique(dta.test$LastName))
for (k in unique (dta.test$DOB))
{
{
{
dta.test$Person_id[dta.test$FirstName==i & dta.test$LastName==j & dta.test$DOB==k] <- min(dta.test$Person_id[dta.test$FirstName==i & dta.test$LastName==j & dta.test$DOB==k], na.rm=T)
}
}
}
答案 0 :(得分:4)
这是一个dplyr
解决方案
library(dplyr)
dta.test %>%
group_by(FirstName, LastName, DOB) %>%
mutate(Person_id = min(Person_id))
# A tibble: 11 x 5
# Groups: FirstName, LastName, DOB [9]
# Person_id FirstName LastName DOB Actual_ID
# <dbl> <fct> <fct> <fct> <dbl>
# 1 1. John Smith 2001-01-01 1.
# 2 2. James Jones 2002-01-01 2.
# 3 3. John Jones 2003-01-01 3.
# 4 4. Alex Jones 2004-01-01 4.
# 5 5. Alexander Jones 2004-01-01 5.
# 6 6. Jonathan Smith 2001-01-01 6.
# 7 3. John Jones 2003-01-01 3.
# 8 8. Alex Smith 2006-01-01 8.
# 9 9. James Johnson 2006-01-01 9.
# 10 1. John Smith 2001-01-01 1.
# 11 11. John Smith 2009-01-01 11.
编辑 - 添加了效果比较
for_loop_approach <- function() {
for(i in unique(dta.test$FirstName))
for(j in unique(dta.test$LastName))
for (k in unique (dta.test$DOB))
{
{
{
dta.test$Person_id[dta.test$FirstName==i & dta.test$LastName==j & dta.test$DOB==k] <- min(dta.test$Person_id[dta.test$FirstName==i & dta.test$LastName==j & dta.test$DOB==k], na.rm=T)
}
}
}
}
dplyr_approach <- function() {
require(dplyr)
dta.test %>%
group_by(FirstName, LastName, DOB) %>%
mutate(Person_id = min(Person_id))
}
library(microbenchmark)
microbenchmark(for_loop_approach(), dplyr_approach(), unit="relative", times=100L)
Unit: relative
expr min lq mean median uq max neval
for_loop_approach() 20.97948 20.6478 18.8189 17.81437 17.91815 11.76743 100
dplyr_approach() 1.00000 1.0000 1.0000 1.00000 1.00000 1.00000 100
There were 50 or more warnings (use warnings() to see the first 50)
答案 1 :(得分:0)
我实现了一个基础R方法而不是dplyr,它出来了(根据microbenchmark)比CPak的dplyr方法快7.46倍,比for循环方法快139.4倍。我刚刚使用match
和paste0
函数来实现此功能,它会自动保留最小的匹配ID:
dta.test[, "Actual_id"] <- match(paste0(dta.test$FirstName, dta.test$LastName, dta.test$DOB), paste0(dta.test$FirstName, dta.test$LastName, dta.test$DOB))
这种方法也可以直接输出到数据框,而不是输出(您需要从中提取新列并添加到数据框中):
Person_id FirstName LastName DOB Actual_id
1 1 John Smith 2001-01-01 1
2 2 James Jones 2002-01-01 2
3 3 John Jones 2003-01-01 3
4 4 Alex Jones 2004-01-01 4
5 5 Alexander Jones 2004-01-01 5
6 6 Jonathan Smith 2001-01-01 6
7 7 John Jones 2003-01-01 3
8 8 Alex Smith 2006-01-01 8
9 9 James Johnson 2006-01-01 9
10 10 John Smith 2001-01-01 1
11 11 John Smith 2009-01-01 11
在您的真实数据中,我希望person id不是那么简单(不仅仅是一个整数),并且不按数字顺序运行,例如
dta.test$Person_id <- paste0(LETTERS[1:11],1:11)
您需要进行一些小调整才能使其仍然有用,以便从Person_id
列中提取值:
dta.test[, "Actual_id"] <- dta.test[match(paste0(dta.test$FirstName, dta.test$LastName, dta.test$DOB), paste0(dta.test$FirstName, dta.test$LastName, dta.test$DOB)), "Person_id"]
,并提供:
Person_id FirstName LastName DOB Actual_id
1 A1 John Smith 2001-01-01 A1
2 B2 James Jones 2002-01-01 B2
3 C3 John Jones 2003-01-01 C3
4 D4 Alex Jones 2004-01-01 D4
5 E5 Alexander Jones 2004-01-01 E5
6 F6 Jonathan Smith 2001-01-01 F6
7 G7 John Jones 2003-01-01 C3
8 H8 Alex Smith 2006-01-01 H8
9 I9 James Johnson 2006-01-01 I9
10 J10 John Smith 2001-01-01 A1
11 K11 John Smith 2009-01-01 K11
答案 2 :(得分:0)
对于包含大量组的大型数据,数据表解决方案可能最快:
library(data.table)
setDT(dta.test, key = c("FirstName", "LastName", "DOB"))
dta.test[, Actual_ID := min(Person_id, na.rm = TRUE), by = .(FirstName, LastName, DOB)]