Pandas计算数据帧中不同列上的所有匹配项

时间:2018-04-23 13:53:54

标签: python pandas dataframe multi-index

我有一个与此类似的数据框 GRP HOST1 HOST2 HOST3 FILESIZE 0 0 srv39 srv45 srv47 203498176 1 1 srv102 srv36 srv38 452763956 2 1 srv101 srv36 srv45 453277268 3 1 srv101 srv34 srv45 448174741 4 1 srv36 srv49 srv50 452728577 5 2 srv100 srv47 srv48 454617541 6 2 srv100 srv45 srv49 454617541 7 2 srv38 srv49 srv47 454617541

现在我想要实现的是计算我在GROST列分组的HOST1 HOST2和HOST3列中出现的所有事件,如下所示

-- GRP HOST count 1 srv101 2 srv36 3 如果我能够将FILESIZE列的值相加,那将是完美的。 我试图使用我发现here的建议来确定解决方案,但我无法按GRP分组计数。

有关哪种方法可以获得大熊猫需要的最佳方法?

2 个答案:

答案 0 :(得分:3)

使用melt重新塑造anf,然后汇总size

df = (df.melt(id_vars='GRP', value_vars=['HOST1','HOST2','HOST3'], value_name='HOST')
        .groupby(['GRP', 'HOST'])
        .size()
        .reset_index(name='count'))
print (df)
    GRP    HOST  count
0     0   srv39      1
1     0   srv45      1
2     0   srv47      1
3     1  srv101      2
4     1  srv102      1
5     1   srv34      1
6     1   srv36      3
7     1   srv38      1
8     1   srv45      2
9     1   srv49      1
10    1   srv50      1
11    2  srv100      2
12    2   srv38      1
13    2   srv45      1
14    2   srv47      2
15    2   srv48      1
16    2   srv49      2

如果希望sum列的FILESIZE使用agg

df1 = (df.melt(id_vars=['GRP', 'FILESIZE'], value_vars=['HOST1','HOST2','HOST3'], value_name='HOST')
        .groupby(['GRP', 'HOST'])['FILESIZE']
        .agg(['size','sum'])
        .reset_index()
        )
print (df1)
    GRP    HOST  size         sum
0     0   srv39     1   203498176
1     0   srv45     1   203498176
2     0   srv47     1   203498176
3     1  srv101     2   901452009
4     1  srv102     1   452763956
5     1   srv34     1   448174741
6     1   srv36     3  1358769801
7     1   srv38     1   452763956
8     1   srv45     2   901452009
9     1   srv49     1   452728577
10    1   srv50     1   452728577
11    2  srv100     2   909235082
12    2   srv38     1   454617541
13    2   srv45     1   454617541
14    2   srv47     2   909235082
15    2   srv48     1   454617541
16    2   srv49     2   909235082

答案 1 :(得分:2)

您可以使用Unable to locate an element with the xpath expression //div[@class='label series smaller' | @class='label series smaller hover']/span[text()='Jul-14' because of the following error: SyntaxError: Failed to execute 'evaluate' on 'Document': The string '//div[@class='label series smaller' | @class='label series smaller hover']/span[text()='Jul-14'' is not a valid XPath expression. ,然后关注stackgroupby

size

如果你需要总和

s=df.set_index('GRP')[['HOST1','HOST2','HOST3']].stack().to_frame('HOST')
s.groupby([s.index.get_level_values(level=0),s.HOST]).size()
Out[229]: 
GRP  HOST  
0    srv39     1
     srv45     1
     srv47     1
1    srv101    2
     srv102    1
     srv34     1
     srv36     3
     srv38     1
     srv45     2
     srv49     1
     srv50     1
2    srv100    2
     srv38     1
     srv45     1
     srv47     2
     srv48     1
     srv49     2
dtype: int64