让我们说,一些内置函数返回train_op
和summary_op
summary_op
由tf.summary.merge(summaries, name='summary_op')
定义,我无法触及该函数。
另外,让我们说,我将使用内置的slim.learning.train
,它将train_op
和summary_op
作为输入参数。
# -- typical
train_op, summary_op = model_fn(image)
slim.learning.train(train_op, summary_op=summary_op)
# -- my question
train_op, summary_op = model_fn(image)
some_other_summary_list = some_another_function()
summary_op_ = ... # is it possible to append some_other_summary_list to summary_op?
slim.learning.train(train_op, summary_op=summary_op_)
如何在已合并的summary_op
和新收集的摘要some_other_summary_list
中合并摘要?
- 如果我tf.merge_all(tf.GraphKeys.SUMMARIES)
实际上会有太多摘要,因为model_fn()
只会收集有用和必要的摘要。
- 我可以考虑定义单独的summary_op2
并定义train_step_fn
,如下所示:
from tensorflow.contrib.slim.python.slim.learning import train_step
def train_step_fn(...):
... = train_step(...)
if iteration % 100 == 0:
summaries = session.run(summary_op2)
summary_writer.add_summary(summaries, iteration)
slim.learning.train(train_op, summary_op=summary_op, train_step_fn=train_step_fn)
然而,如果我能以某种方式将新摘要附加到summary_op
,这似乎太多了。有可能吗?
答案 0 :(得分:1)
如果" import android.databinding.Observable
import android.databinding.ObservableField
class NonNullObservableField<T : Any>(
value: T, vararg dependencies: Observable
) : ObservableField<T>(*dependencies) {
init {
set(value)
}
override fun get(): T = super.get()!!
@Suppress("RedundantOverride") // Only allow non-null `value`.
override fun set(value: T) = super.set(value)
}
和新收集的summary_op
&#34;由summaries some_other_summary_list
创建,您可以通过tf.summary.merge
再次合并它们,如此代码所示:
tf.summary.merge([summary_op, summaries some_other_summary_list])