我能够使用自己的数据在TensorFlow中训练模型。模型的输入和输出是图像。我现在尝试获取预测的输出并将其保存到png图像文件以查看最新情况。不幸的是,我在运行我创建的以下函数时遇到错误,以测试预测。我的目标是保存也是图像的预测,这样我就可以用普通的图像查看器打开它。
代码还有一些。在我的主要我正在创建一个估算器
def predict_element(my_model, features):
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x=features,
num_epochs=1,
shuffle=False)
eval_results = my_model.predict(input_fn=eval_input_fn)
predictions = eval_results.next() #this returns a dict with my tensors
prediction_tensor = predictions["y"] #get the tensor from the dict
image_tensor = tf.reshape(prediction_tensor, [IMG_WIDTH, -1]) #reshape to a matrix due my returned tensor is a 1D flat one
decoded_image = tf.image.encode_png(image_tensor)
write_image = tf.write_file("output/my_output_image.png", decoded_image)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(write_image))
def get_input():
filename_dataset = tf.data.Dataset.list_files("features/*.png")
label_dataset = tf.data.Dataset.list_files("labels/*.png")
# Make a Dataset of image tensors by reading and decoding the files.
image_dataset = filename_dataset.map(lambda x: tf.cast(tf.image.decode_png(tf.read_file(x), channels=1),tf.float32))
l_dataset = label_dataset.map(lambda x: tf.cast(tf.image.decode_png(tf.read_file(x),channels=1),tf.float32))
image_reshape = image_dataset.map(lambda x: tf.reshape(x, [IM_WIDTH * IM_HEIGHT]))
label_reshape = l_dataset.map(lambda x: tf.reshape(x, [IM_WIDTH * IM_HEIGHT]))
iterator = image_reshape.make_one_shot_iterator()
iterator2 = label_reshape.make_one_shot_iterator()
next_img = iterator.get_next()
next_lbl = iterator2.get_next()
features = []
labels = []
# read all 10 images and labels and put it in the array
# so we can pass it to the estimator
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(10):
t1, t2 = sess.run([next_img, next_lbl])
features.append(t1)
labels.append(t2)
return {"x": np.array(features)}, np.array(labels)
def main(unused_argv):
features, labels = get_input() # creating the features dict {"x": }
my_estimator = tf.estimator.Estimator(model_fn=my_cnn_model, model_dir="/tmp/my_model")
predict_element(my_estimator, features)
错误是
图表已完成且无法修改
使用一些简单的print()语句,我可以看到用
检索dicteval_results = my_model.predict(input_fn = eval_input_fn)
很可能是最终确定图表的人。 我绝对不知道该做什么或在哪里寻找解决方案。我怎么能保存输出?
我在我的model_fn中试过这个:
#the last layer of my network is dropout
predictions = {
"y": dropout
}
if mode == tf.estimator.ModeKeys.PREDICT:
reshape1 = tf.reshape(dropout, [-1,IM_WIDTH, IM_HEIGHT])
sliced = tf.slice(reshape1, [0,0,0], [1, IM_WIDTH, IM_HEIGHT])
encoded = tf.image.encode_png(tf.cast(sliced, dtype=tf.uint8))
outputfile = tf.write_file(params["output_path"], encoded)
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
我的问题是我无法传回"输出文件"节点,所以我可以使用它。
答案 0 :(得分:1)
您的图表已完成,无法修改。您可以将此tensorflow操作添加到模型中(在运行之前),或者只是编写一些python代码,单独保存图像(不使用tensorflow)。也许我会发现我的一些旧代码作为例子。
您还可以创建第二个图形,然后可以在不更改现有模型图的情况下使用张量流。
您必须区分图节点和评估对象。 tf.reshape不将数组作为输入,而是图形节点。 https://www.tensorflow.org/programmers_guide/graphs
答案 1 :(得分:0)
对于每个有同样问题的人来说,这是我的解决方案。我不知道这是否是正确的方法,但它有效。
在我的预测功能中,我创建了第二个图形,用于重塑,切片,编码和保存,如:
pred_dict = eval_results.next() #generator the predict function returns
preds = pred_dict["y"] #get the predictions from the dict
#create the second graph
g = tf.Graph()
with g.as_default():
inp = tf.Variable(preds)
reshape1 = tf.reshape(printnode, [IM_WIDTH, IM_HEIGHT, -1])
sliced = tf.slice(reshape1, [0,0,0], [ IM_WIDTH, IM_HEIGHT,1])
reshaped = tf.reshape(sliced, [IM_HEIGHT, IM_WIDTH, 1])
encoded = tf.image.encode_png(tf.image.convert_image_dtype(reshaped,tf.uint16))
outputfile = tf.write_file("/tmp/pred_output/prediction_img.png", encoded)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(outputfile)