在Tensorflow中恢复和预测

时间:2018-04-17 10:35:17

标签: python tensorflow machine-learning

我正在跟踪this link癌症预测。现在我的训练和测试阶段完成我想提供新数据作为输入并想要预测。为此我保存模型并恢复它以获得预测,但我得到错误

ValueError: Cannot feed value of shape (31,) for Tensor 'Placeholder_1:0', which has shape '(?, 31)'

以下是我的代码:

saver = tf.train.Saver()
sampletest = [-0.24222039 -0.75688274 -0.26264569 -0.75637054 -0.7154845  -0.55675554 -0.51883267 -0.69442359 -0.87362527 -1.46135011 -0.05206671 -0.2790065 -0.28614862 -0.1934161  -0.38264881 -0.1295509   0.05817795 -0.32080093-0.64650773 -0.19383338 -0.14508449 -0.74260509 -0.66173979 -0.73123076-0.68635871 -0.78697688 -0.4790055  -0.71702336 -0.90543288 -1.1197415-0.41889736]
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for epoch in range(training_epochs):
        for batch in range(int(n_samples / batch_size)):
            batch_x = input_X[batch * batch_size: (1 + batch) * batch_size]
            batch_y = input_Y[batch * batch_size: (1 + batch) * batch_size]
            print(batch_x[0])

            sess.run([optimizer], feed_dict={x: batch_x,
                                             y_: batch_y,
                                             pkeep: training_dropout})
            saver.save(sess,'.\cancer_model')

        # Display logs after every 10 epochs
        if (epoch) % display_step == 0:
            train_accuracy, newCost = sess.run([accuracy, cost],
                                               feed_dict={x: input_X, y_: input_Y, pkeep: training_dropout})

            valid_accuracy, valid_newCost = sess.run([accuracy, cost],
                                                     feed_dict={x: input_X_valid, y_: input_Y_valid, pkeep: 1})

            print("Epoch:", epoch, "Acc =", "{:.5f}".format(train_accuracy), "Cost =", "{:.5f}".format(newCost),
                  "Valid_Acc =", "{:.5f}".format(valid_accuracy), "Valid_Cost = ", "{:.5f}".format(valid_newCost))

            # Record the results of the model
            accuracy_history.append(train_accuracy)
            cost_history.append(newCost)
            valid_accuracy_history.append(valid_accuracy)
            valid_cost_history.append(valid_newCost)

            # If the model does not improve after 15 logs, stop the training.
            if valid_accuracy < max(valid_accuracy_history) and epoch > 100:
                stop_early += 1
                if stop_early == 15:
                    break
            else:
                stop_early = 0

    print("Optimization Finished!")

with tf.Session() as sess:
    saver = tf.train.import_meta_graph('.\Cancer_Model\cancer_model.meta')
    saver.restore(sess, tf.train.latest_checkpoint('.\Cancer_Model'))
    prediction = sess.run(y4,feed_dict={x:sampletest})
    print(prediction)

请帮助我。

2 个答案:

答案 0 :(得分:2)

问题是你的模型需要一批例子,而你只是给出了一个例子。尝试更换:

prediction = sess.run(y4, feed_dict={x: sampletest})

使用:

prediction = sess.run(y4, feed_dict={x: [sampletest]})

然后,您将在prediction中使用单个元素获得“批量”结果。

答案 1 :(得分:1)

我想自从模型恢复后,y4输入的占位符被重命名为Variable_1,以避免命名图变量混淆,试试看看

prediction = sess.run(y4,feed_dict={"Variable_1:0":[sampletest]})

虽然我认为prediction = sess.run(y4,feed_dict={"Variable_1:0":sampletest})也会奏效 你也应该将y4恢复为

y_4 = graph.get_operation_by_name('y4:0')

然后运行

prediction = sess.run(y_4,feed_dict={"Variable_1:0":[sampletest]})