Python - 如何使用列标题从CSV数据文件创建字典

时间:2018-04-17 00:21:59

标签: python list dictionary tuples

我正在尝试创建一个函数,该函数接受.csv数据文件的名称和表示该文件中列标题的字符串列表,并返回一个dict对象,每个键都是一个列标题,相应的值是numpy数据文件该列中值的数组。

我的代码现在:

def columndata(filename, columns):
d = dict()
for col in columns:
with open(filename) as filein:
    reader = csv.reader(filein)
        for row in reader:
           if col in row:
               d.append(row)
return d

示例CSV如下所示:

test1,test2
3,2
1,5
6,47
1,4

列文件如下所示:

cols = ['test1', 'test2']

最终结果应该是这样的字典:

{'test1':[3,1,6,1], 'test2':[2, 5, 4, 4]}

2 个答案:

答案 0 :(得分:6)

您可以使用DictReader将CSV数据解析为dict:

import csv
from collections import defaultdict


def parse_csv_by_field(filename, fieldnames):
    d = defaultdict(list)
    with open(filename, newline='') as csvfile:
        reader = csv.DictReader(csvfile, fieldnames)
        next(reader)  # remove header
        for row in reader:
            for field in fieldnames:
                d[field].append(float(row[field]))  # thanks to Paulo!
    return dict(d)

print(parse_csv_by_field('a.csv', fieldnames=['cattle', 'cost']))

答案 1 :(得分:3)

一个简单的熊猫解决方案:

import pandas as pd
df = pd.read_csv('filename', dtype='float') #you wanted float datatype
dict = df.to_dict(orient='list')

如果你想坚持使用普通的python:

import csv
with open(filename, 'r') as f:
    l = list(csv.reader(f))
    dict = {i[0]:[float(x) for x in i[1:]] for i in zip(*l)}

或者,如果你像亚当·斯密那样成为蟒蛇的主人:

import csv
with open(filename, 'r') as f:
    l = list(csv.reader(f))
    dict = {header: list(map(float, values)) for header, *values in zip(*l)}