我试图根据CHIRPS月平均降水量数据来计算SPI,因为它太大了我将其切割到我感兴趣的区域,这里是:https://www.dropbox.com/s/jpwcg8j5bdc5gq6/chirps_mensual_v1.nc?dl=0 我这样做是为了打开它:
require(utils)
require(colorRamps)
require(RNetCDF)
require(rasterVis)
require(rgdal)
library(ncdf4)
library(raster)
datos2 <- nc_open("Datos/chirps_mensual_v1.nc")
ppt_array <- ncvar_get(datos2, "precip")
#I'm only taking complete years so I took out two months from 2018
ppt_mes <- ppt_array[ , ,1:444]
我知道有一个SPI库,但我不知道如何格式化数据以便使用它。所以我尝试通过拟合伽马分布来实现它,但我没有&#39;知道如何为这个数据库做这件事。
有没有人知道如何使用该功能或通过拟合分布来计算SPI?
答案 0 :(得分:3)
我不认为SPI软件包正在执行您(或任何人)认为正在执行的操作。如果您使用debug(spi)
并逐步执行代码,则将看到一步就可以使经验累积分布函数(带有ecdf()
)适合数据的前两行和最后一行。为什么前两行和最后一行?我不知道,但是写这个包的人也使用for循环对矩阵进行t()
。更不用说我认为它应该使用而不是ecdf()
的Gamma分布或Pearson III分布(根据Guttman,NB(1999)接受的标准化降水指数:一种计算算法。Jawra,美国水资源协会, 35,311–322。)。
答案 1 :(得分:0)
最后,我使用SPI库创建了该结果,结果将是每个网格点中每个月的值,如果您想在一个特定区域上计算该值,我也可以这样做,但是如果您也想要它:
此外,这是我使用CRU数据制作的,但是您可以对其进行调整:
#spei cru 1x1
rm(list=ls(all=TRUE)); dev.off()
require(utils)
require(RNetCDF)
require(rasterVis)
require(rgdal)
library(ncdf4)
require(SPEI)
########################################################################################################
prec <- open.nc("pre_mensual.nc")
lon <- length(var.get.nc(prec, "lon"))
lat <- length(var.get.nc(prec, "lat"))
lon1 <- var.get.nc(prec, "lon")
lat1 <- var.get.nc(prec, "lat")
ppt <- var.get.nc(prec, "pre")
ppt <- ppt[ , ,109:564] #31 18 456 (1980-2017)
anio = 456/12
###########################################################################################################
#Reshape data
precip <- sapply(1:dim(ppt)[3], function(x)t(ppt[,,x]))
############################################################################################################
#This is for SPI-6, you can use either of them
spi_6 <- array(list(),(lon*lat))
for (i in 1:(lon*lat)) {
spi_6[[i]] <- spi(precip[i,], scale=6, na.rm=TRUE)
}
#############################################################################################################
#Go back to an array form
sapply(spi_6, '[[',2 )->matriz_ppt
ppt_6 <- array(aperm(matriz_ppt, c(2,1),c(37,63,456)));spi_c <- array(t(ppt_6), dim=c(37,63,456))
#############################################################################################################
#Save to netcdf
for(i in 1:456) {
nam <- paste("SPI", i, sep = "")
assign(nam,raster((spi_c[ , ,i]), xmn=min(lon1), xmx=max(lon1), ymn=min(lat1), ymx=max(lat1), crs=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs+ towgs84=0,0,0")) )
}
gpcc_spi <- stack(mget(paste0("SPI", 1:456)))
outfile <- "spi6_cru_1980_2017.nc"
crs(gpcc_spi) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
writeRaster(gpcc_spi, outfile, overwrite=TRUE, format="CDF", varname="SPEI", varunit="units",longname="SPEI CRU", xname="lon", yname="lat")
这不是计算它的最时尚的方法,但它确实有效。 :)
编辑:如果要计算某个区域的SPI / SPEI,这就是我所做的:
library(SPEI)
library(ncdf4)
library(raster)
#
pre_nc <- nc_open("pre_1971_2017_Vts4.nc")
pre <- ncvar_get(pre_nc, "pre")
pre <- pre[, , 109:564] #This is for the time I'm interested in
lats <- ncvar_get(pre_nc, "lat")
lons <- ncvar_get(pre_nc, "lon")
times <- 0:467
# Read mask
#This is a mask you need to create that adjusts to your region of interest
#It consist of a matrix of 0's and 1's, the 1's are placed in the area
#you are interested in
mask1 <- nc_open("cuenca_IV_CDO_05_final.nc")
m1 <- ncvar_get(mask1, "Band1")
m1[m1 == 0] <- NA
#
# Apply mask to data
#
pre1 <- array(NA, dim=dim(pre))
#
for(lon in 1:length(lons)){
for(lat in 1:length(lats)){
pre1[lon,lat,] <- pre[lon,lat,]*m1[lon,lat]
}
}
#
# Mean over the area of interest
#
mean_pre1 <- apply(pre1,c(3),mean, na.rm=TRUE)
# Calculate SPI/SPEI
spi1 <- matrix(data= NA, nrow = 456, ncol = 48)
for (i in 1:48) {
spi1[,i] <- spi(data=ts(mean_pre1,freq=12),scale= i)$fitted
}
#This calculates SPI/SPEI-1 to SPI/SPEI-48, you can change it
# Save
#
write.table(spi1,'spi_1980_2017.csv',sep=';',row.names=FALSE)