import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Import Data set
dataset= pd.read_csv('Data.csv')
X = dataset.iloc[:,:-1].values
Y = dataset.iloc[:,3].values
#Taking Care of The Missing Data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='nan',strategy='mean',axis=0)
imputer = imputer.fit(X[:,1:3])
X[:,1:3] = imputer.transform(X[:,1:3])
我正在按照这个教程系列进行操作,并且正如导师对我做的那样,当然在代码中提到了这个错误。潜在的解决方案当然非常有用。提前谢谢。
Error : if value_to_mask == "NaN" or np.isnan(value_to_mask): TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
答案 0 :(得分:2)
尝试:
imputer = Imputer(missing_values=np.nan,strategy='mean',axis=0)
或
imputer = Imputer(missing_values='NaN',strategy="mean",axis=0)
中所述