为我的最后一年项目编写此算法。调试了一些,但坚持这一点。尝试更改浮动方法,但没有真正改变。
----> 8 hypothesis = np.dot(float(x), theta)
TypeError: only length-1 arrays can be converted to Python scalars
整个代码 -
import numpy as np
import random
import pandas as pd
def gradientDescent(x, y, theta, alpha, m, numIterations):
xTrans = x.transpose()
for i in range(0, numIterations):
hypothesis = np.dot(x, theta)
loss = hypothesis - y
# avg cost per example (the 2 in 2*m doesn't really matter here.
# But to be consistent with the gradient, I include it)
cost = np.sum(loss ** 2) / (2 * m)
print("Iteration %d | Cost: %f" % (i, cost))
# avg gradient per example
gradient = np.dot(xTrans, loss) / m
# update
theta = theta - alpha * gradient
return theta
df = pd.read_csv(r'C:\Users\WELCOME\Desktop\FinalYearPaper\ConferencePaper\NewTrain.csv', 'rU', delimiter=",",header=None)
x = df.loc[:,'0':'2'].as_matrix()
y = df[3].as_matrix()
print(x)
print(y)
m, n = np.shape(x)
numIterations= 100
alpha = 0.001
theta = np.ones(n)
theta = gradientDescent(x, y, theta, alpha, m, numIterations)
print(theta)
答案 0 :(得分:0)
null
是一个numpy数组,Python的内置x
函数无法处理。尝试:
float