我打算使用spacy和textacy来识别英语中的句子结构。
例如: 猫坐在垫子上 - SVO,猫跳起来拿起饼干 - SVV0。 猫吃了饼干和饼干。 - SVOO
该程序应该读取一个段落并将每个句子的输出作为SVO,SVOO,SVVO或其他自定义结构返回。
到目前为止的努力:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
from __future__ import unicode_literals
# Load Library files
import en_core_web_sm
import spacy
import textacy
nlp = en_core_web_sm.load()
SUBJ = ["nsubj","nsubjpass"]
VERB = ["ROOT"]
OBJ = ["dobj", "pobj", "dobj"]
text = nlp(u'The cat sat on the mat. The cat jumped and picked up the biscuit. The cat ate biscuit and cookies.')
sub_toks = [tok for tok in text if (tok.dep_ in SUBJ) ]
obj_toks = [tok for tok in text if (tok.dep_ in OBJ) ]
vrb_toks = [tok for tok in text if (tok.dep_ in VERB) ]
text_ext = list(textacy.extract.subject_verb_object_triples(text))
print("Subjects:", sub_toks)
print("VERB :", vrb_toks)
print("OBJECT(s):", obj_toks)
print ("SVO:", text_ext)
输出:
(u'Subjects:', [cat, cat, cat])
(u'VERB :', [sat, jumped, ate])
(u'OBJECT(s):', [mat, biscuit, biscuit])
(u'SVO:', [(cat, ate, biscuit), (cat, ate, cookies)])
SVOO SVO SVVO
等?修改1:
我正在构思一些方法。
from __future__ import unicode_literals
import spacy,en_core_web_sm
import textacy
nlp = en_core_web_sm.load()
sentence = 'I will go to the mall.'
doc = nlp(sentence)
chk_set = set(['PRP','MD','NN'])
result = chk_set.issubset(t.tag_ for t in doc)
if result == False:
print "SVO not identified"
elif result == True: # shouldn't do this
print "SVO"
else:
print "Others..."
编辑2:
进一步取得进展
from __future__ import unicode_literals
import spacy,en_core_web_sm
import textacy
nlp = en_core_web_sm.load()
sentence = 'The cat sat on the mat. The cat jumped and picked up the biscuit. The cat ate biscuit and cookies.'
doc = nlp(sentence)
print(" ".join([token.dep_ for token in doc]))
当前输出:
det nsubj ROOT prep det pobj punct det nsubj ROOT cc conj prt det dobj punct det nsubj ROOT dobj cc conj punct
预期产出:
SVO SVVO SVOO
想法是将依赖标记分解为简单的主语 - 动词和对象模型。
如果没有其他选项,可以考虑使用正则表达式来实现它。但这是我的最后一个选择。
编辑3:
在研究this link后,得到了一些改进。
def testSVOs():
nlp = en_core_web_sm.load()
tok = nlp("The cat sat on the mat. The cat jumped for the biscuit. The cat ate biscuit and cookies.")
svos = findSVOs(tok)
print(svos)
当前输出:
[(u'cat', u'sat', u'mat'), (u'cat', u'jumped', u'biscuit'), (u'cat', u'ate', u'biscuit'), (u'cat', u'ate', u'cookies')]
预期输出:
我期待着句子的符号。虽然我能够提取SVO如何将其转换为SVO表示法。它更多的是模式识别而不是句子内容本身。
SVO SVO SVOO
答案 0 :(得分:1)
问题1:SVO被覆盖。为什么呢?
这是textacy
问题。这部分效果不佳,请参阅此blog
问题2:如何将句子识别为SVOO SVO SVVO等?
您应该解析依赖关系树。 SpaCy
提供信息,您只需要使用.head
,.left
,.right
和.children
属性编写一组规则以将其解压缩。
>>for word in text:
print('%10s %5s %10s %10s %s'%(word.text, word.tag_, word.dep_, word.pos_, word.head.text_))
The DT det DET cat
cat NN nsubj NOUN sat
sat VBD ROOT VERB sat
on IN prep ADP sat
the DT det DET mat
mat NN pobj NOUN on
. . punct PUNCT sat
of IN ROOT ADP of
the DT det DET lab
art NN compound NOUN lab
lab NN pobj NOUN of
. . punct PUNCT of
The DT det DET cat
cat NN nsubj NOUN jumped
jumped VBD ROOT VERB jumped
and CC cc CCONJ jumped
picked VBD conj VERB jumped
up RP prt PART picked
the DT det DET biscuit
biscuit NN dobj NOUN picked
. . punct PUNCT jumped
The DT det DET cat
cat NN nsubj NOUN ate
ate VBD ROOT VERB ate
biscuit NN dobj NOUN ate
and CC cc CCONJ biscuit
cookies NNS conj NOUN biscuit
. . punct PUNCT ate
我建议您查看此code,只需将pobj
添加到OBJECTS
列表中,即可获得SVO和SVOO。稍微摆弄你也可以获得SVVO。