图像上的大红色X,我无法检测到错误

时间:2018-03-23 13:35:27

标签: c# uwp aforge

简而言之,我试图实现一些运动检测算法,在我的情况下,我正在使用便携式版本的AForge库处理UWP来处理图像。避免这个问题,我将转换SoftwareBitmap对象(我从MediaFrameReader获得)转换为Bitmap对象(反之亦然),我在与动作检测相关的代码中使用了该对象。由于这种转换,我得到了前景中带有大红色X的正确图像。代码如下:

private async void FrameArrived(MediaFrameReader sender, MediaFrameArrivedEventArgs args)
    {
        var frame = sender.TryAcquireLatestFrame();
        if (frame != null && !_detectingMotion)
        {
            SoftwareBitmap aForgeInputBitmap = null;
            var inputBitmap = frame.VideoMediaFrame?.SoftwareBitmap;
            if (inputBitmap != null)
            {
                _detectingMotion = true;
                //The XAML Image control can only display images in BRGA8 format with premultiplied or no alpha
                if (inputBitmap.BitmapPixelFormat == BitmapPixelFormat.Bgra8
                    && inputBitmap.BitmapAlphaMode == BitmapAlphaMode.Premultiplied)
                {
                    aForgeInputBitmap = SoftwareBitmap.Copy(inputBitmap);
                }
                else
                {
                    aForgeInputBitmap = SoftwareBitmap.Convert(inputBitmap, BitmapPixelFormat.Bgra8, BitmapAlphaMode.Ignore);
                }
                await _aForgeHelper.MoveBackgrounds(aForgeInputBitmap);
                SoftwareBitmap aForgeOutputBitmap = await _aForgeHelper.DetectMotion();
                _frameRenderer.PresentSoftwareBitmap(aForgeOutputBitmap);
                _detectingMotion = false;
            }
        }
    }

class AForgeHelper
{
    private Bitmap _background;
    private Bitmap _currentFrameBitmap;

    public async Task MoveBackgrounds(SoftwareBitmap currentFrame)
    {
        if (_background == null)
        {
            _background = TransformToGrayscale(await ConvertSoftwareBitmapToBitmap(currentFrame));
        }
        else
        {
            // modifying _background in compliance with algorithm - in this case irrelevant
        }
    }

    public async Task<SoftwareBitmap> DetectMotion()
    {
        // to check only this conversion
        return await ConvertBitmapToSoftwareBitmap(_background);
    }

    private static async Task<Bitmap> ConvertSoftwareBitmapToBitmap(SoftwareBitmap input)
    {
        Bitmap output = null;
        await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
        {
            WriteableBitmap tmpBitmap = new WriteableBitmap(input.PixelWidth, input.PixelHeight);
            input.CopyToBuffer(tmpBitmap.PixelBuffer);
            output = (Bitmap)tmpBitmap;
        });
        return output;
    }

    private static async Task<SoftwareBitmap> ConvertBitmapToSoftwareBitmap(Bitmap input)
    {
        SoftwareBitmap output = null;
        await CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, () =>
        {
            WriteableBitmap tmpBitmap = (WriteableBitmap)input;
            output = new SoftwareBitmap(BitmapPixelFormat.Bgra8, tmpBitmap.PixelWidth, tmpBitmap.PixelHeight,
                                        BitmapAlphaMode.Premultiplied);
            output.CopyFromBuffer(tmpBitmap.PixelBuffer);
        });
        return output;
    }

    private static Bitmap TransformToGrayscale(Bitmap input)
    {
        Grayscale grayscaleFilter = new Grayscale(0.2125, 0.7154, 0.0721);
        Bitmap output = grayscaleFilter.Apply(input);
        return output;
    }

当然,我尝试使用try-catch子句检测一些错误。我一无所获。提前谢谢。

编辑(29/03/2018):

通常,我的应用程序的目标是提供与Kinect传感器相关的一些功能。应用程序用户可以从功能列表中选择一些功能。首先,这个应用程序必须在Xbox One上提供,因此我选择了UWP。由于&#39;科学&#39;问题,我使用MVVM Light框架实现了MVVM模式。至于 PresentSoftwareBitmap()方法,它来自Windows-universal-samples repo,我在下面粘贴了FrameRenderer助手类:

[ComImport]
[Guid("5B0D3235-4DBA-4D44-865E-8F1D0E4FD04D")]
[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
unsafe interface IMemoryBufferByteAccess
{
    void GetBuffer(out byte* buffer, out uint capacity);
}

class FrameRenderer
{
    private Image _imageElement;
    private SoftwareBitmap _backBuffer;
    private bool _taskRunning = false;

    public FrameRenderer(Image imageElement)
    {
        _imageElement = imageElement;
        _imageElement.Source = new SoftwareBitmapSource();
    }

    // Processes a MediaFrameReference and displays it in a XAML image control
    public void ProcessFrame(MediaFrameReference frame)
    {
        var softwareBitmap = FrameRenderer.ConvertToDisplayableImage(frame?.VideoMediaFrame);
        if (softwareBitmap != null)
        {
            // Swap the processed frame to _backBuffer and trigger UI thread to render it
            softwareBitmap = Interlocked.Exchange(ref _backBuffer, softwareBitmap);

            // UI thread always reset _backBuffer before using it.  Unused bitmap should be disposed.
            softwareBitmap?.Dispose();

            // Changes to xaml ImageElement must happen in UI thread through Dispatcher
            var task = _imageElement.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
                async () =>
                {
                    // Don't let two copies of this task run at the same time.
                    if (_taskRunning)
                    {
                        return;
                    }
                    _taskRunning = true;

                    // Keep draining frames from the backbuffer until the backbuffer is empty.
                    SoftwareBitmap latestBitmap;
                    while ((latestBitmap = Interlocked.Exchange(ref _backBuffer, null)) != null)
                    {
                        var imageSource = (SoftwareBitmapSource)_imageElement.Source;
                        await imageSource.SetBitmapAsync(latestBitmap);
                        latestBitmap.Dispose();
                    }

                    _taskRunning = false;
                });
        }
    }



    // Function delegate that transforms a scanline from an input image to an output image.
    private unsafe delegate void TransformScanline(int pixelWidth, byte* inputRowBytes, byte* outputRowBytes);
    /// <summary>
    /// Determines the subtype to request from the MediaFrameReader that will result in
    /// a frame that can be rendered by ConvertToDisplayableImage.
    /// </summary>
    /// <returns>Subtype string to request, or null if subtype is not renderable.</returns>

    public static string GetSubtypeForFrameReader(MediaFrameSourceKind kind, MediaFrameFormat format)
    {
        // Note that media encoding subtypes may differ in case.
        // https://docs.microsoft.com/en-us/uwp/api/Windows.Media.MediaProperties.MediaEncodingSubtypes

        string subtype = format.Subtype;
        switch (kind)
        {
            // For color sources, we accept anything and request that it be converted to Bgra8.
            case MediaFrameSourceKind.Color:
                return Windows.Media.MediaProperties.MediaEncodingSubtypes.Bgra8;

            // The only depth format we can render is D16.
            case MediaFrameSourceKind.Depth:
                return String.Equals(subtype, Windows.Media.MediaProperties.MediaEncodingSubtypes.D16, StringComparison.OrdinalIgnoreCase) ? subtype : null;

            // The only infrared formats we can render are L8 and L16.
            case MediaFrameSourceKind.Infrared:
                return (String.Equals(subtype, Windows.Media.MediaProperties.MediaEncodingSubtypes.L8, StringComparison.OrdinalIgnoreCase) ||
                    String.Equals(subtype, Windows.Media.MediaProperties.MediaEncodingSubtypes.L16, StringComparison.OrdinalIgnoreCase)) ? subtype : null;

            // No other source kinds are supported by this class.
            default:
                return null;
        }
    }

    /// <summary>
    /// Converts a frame to a SoftwareBitmap of a valid format to display in an Image control.
    /// </summary>
    /// <param name="inputFrame">Frame to convert.</param>

    public static unsafe SoftwareBitmap ConvertToDisplayableImage(VideoMediaFrame inputFrame)
    {
        SoftwareBitmap result = null;
        using (var inputBitmap = inputFrame?.SoftwareBitmap)
        {
            if (inputBitmap != null)
            {
                switch (inputFrame.FrameReference.SourceKind)
                {
                    case MediaFrameSourceKind.Color:
                        // XAML requires Bgra8 with premultiplied alpha.
                        // We requested Bgra8 from the MediaFrameReader, so all that's
                        // left is fixing the alpha channel if necessary.
                        if (inputBitmap.BitmapPixelFormat != BitmapPixelFormat.Bgra8)
                        {
                            System.Diagnostics.Debug.WriteLine("Color frame in unexpected format.");
                        }
                        else if (inputBitmap.BitmapAlphaMode == BitmapAlphaMode.Premultiplied)
                        {
                            // Already in the correct format.
                            result = SoftwareBitmap.Copy(inputBitmap);
                        }
                        else
                        {
                            // Convert to premultiplied alpha.
                            result = SoftwareBitmap.Convert(inputBitmap, BitmapPixelFormat.Bgra8, BitmapAlphaMode.Premultiplied);
                        }
                        break;

                    case MediaFrameSourceKind.Depth:
                        // We requested D16 from the MediaFrameReader, so the frame should
                        // be in Gray16 format.
                        if (inputBitmap.BitmapPixelFormat == BitmapPixelFormat.Gray16)
                        {
                            // Use a special pseudo color to render 16 bits depth frame.
                            var depthScale = (float)inputFrame.DepthMediaFrame.DepthFormat.DepthScaleInMeters;
                            var minReliableDepth = inputFrame.DepthMediaFrame.MinReliableDepth;
                            var maxReliableDepth = inputFrame.DepthMediaFrame.MaxReliableDepth;
                            result = TransformBitmap(inputBitmap, (w, i, o) => PseudoColorHelper.PseudoColorForDepth(w, i, o, depthScale, minReliableDepth, maxReliableDepth));
                        }
                        else
                        {
                            System.Diagnostics.Debug.WriteLine("Depth frame in unexpected format.");
                        }
                        break;

                    case MediaFrameSourceKind.Infrared:
                        // We requested L8 or L16 from the MediaFrameReader, so the frame should
                        // be in Gray8 or Gray16 format. 
                        switch (inputBitmap.BitmapPixelFormat)
                        {
                            case BitmapPixelFormat.Gray16:
                                // Use pseudo color to render 16 bits frames.
                                result = TransformBitmap(inputBitmap, PseudoColorHelper.PseudoColorFor16BitInfrared);
                                break;

                            case BitmapPixelFormat.Gray8:
                                // Use pseudo color to render 8 bits frames.
                                result = TransformBitmap(inputBitmap, PseudoColorHelper.PseudoColorFor8BitInfrared);
                                break;
                            default:
                                System.Diagnostics.Debug.WriteLine("Infrared frame in unexpected format.");
                                break;
                        }
                        break;
                }
            }
        }

        return result;
    }



    /// <summary>
    /// Transform image into Bgra8 image using given transform method.
    /// </summary>
    /// <param name="softwareBitmap">Input image to transform.</param>
    /// <param name="transformScanline">Method to map pixels in a scanline.</param>

    private static unsafe SoftwareBitmap TransformBitmap(SoftwareBitmap softwareBitmap, TransformScanline transformScanline)
    {
        // XAML Image control only supports premultiplied Bgra8 format.
        var outputBitmap = new SoftwareBitmap(BitmapPixelFormat.Bgra8,
            softwareBitmap.PixelWidth, softwareBitmap.PixelHeight, BitmapAlphaMode.Premultiplied);

        using (var input = softwareBitmap.LockBuffer(BitmapBufferAccessMode.Read))
        using (var output = outputBitmap.LockBuffer(BitmapBufferAccessMode.Write))
        {
            // Get stride values to calculate buffer position for a given pixel x and y position.
            int inputStride = input.GetPlaneDescription(0).Stride;
            int outputStride = output.GetPlaneDescription(0).Stride;
            int pixelWidth = softwareBitmap.PixelWidth;
            int pixelHeight = softwareBitmap.PixelHeight;

            using (var outputReference = output.CreateReference())
            using (var inputReference = input.CreateReference())
            {
                // Get input and output byte access buffers.
                byte* inputBytes;
                uint inputCapacity;
                ((IMemoryBufferByteAccess)inputReference).GetBuffer(out inputBytes, out inputCapacity);
                byte* outputBytes;
                uint outputCapacity;
                ((IMemoryBufferByteAccess)outputReference).GetBuffer(out outputBytes, out outputCapacity);

                // Iterate over all pixels and store converted value.
                for (int y = 0; y < pixelHeight; y++)
                {
                    byte* inputRowBytes = inputBytes + y * inputStride;
                    byte* outputRowBytes = outputBytes + y * outputStride;

                    transformScanline(pixelWidth, inputRowBytes, outputRowBytes);
                }
            }
        }

        return outputBitmap;
    }



    /// <summary>
    /// A helper class to manage look-up-table for pseudo-colors.
    /// </summary>

    private static class PseudoColorHelper
    {
        #region Constructor, private members and methods

        private const int TableSize = 1024;   // Look up table size
        private static readonly uint[] PseudoColorTable;
        private static readonly uint[] InfraredRampTable;

        // Color palette mapping value from 0 to 1 to blue to red colors.
        private static readonly Color[] ColorRamp =
        {
            Color.FromArgb(a:0xFF, r:0x7F, g:0x00, b:0x00),
            Color.FromArgb(a:0xFF, r:0xFF, g:0x00, b:0x00),
            Color.FromArgb(a:0xFF, r:0xFF, g:0x7F, b:0x00),
            Color.FromArgb(a:0xFF, r:0xFF, g:0xFF, b:0x00),
            Color.FromArgb(a:0xFF, r:0x7F, g:0xFF, b:0x7F),
            Color.FromArgb(a:0xFF, r:0x00, g:0xFF, b:0xFF),
            Color.FromArgb(a:0xFF, r:0x00, g:0x7F, b:0xFF),
            Color.FromArgb(a:0xFF, r:0x00, g:0x00, b:0xFF),
            Color.FromArgb(a:0xFF, r:0x00, g:0x00, b:0x7F),
        };

        static PseudoColorHelper()
        {
            PseudoColorTable = InitializePseudoColorLut();
            InfraredRampTable = InitializeInfraredRampLut();
        }

        /// <summary>
        /// Maps an input infrared value between [0, 1] to corrected value between [0, 1].
        /// </summary>
        /// <param name="value">Input value between [0, 1].</param>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]  // Tell the compiler to inline this method to improve performance

        private static uint InfraredColor(float value)
        {
            int index = (int)(value * TableSize);
            index = index < 0 ? 0 : index > TableSize - 1 ? TableSize - 1 : index;
            return InfraredRampTable[index];
        }

        /// <summary>
        /// Initializes the pseudo-color look up table for infrared pixels
        /// </summary>

        private static uint[] InitializeInfraredRampLut()
        {
            uint[] lut = new uint[TableSize];
            for (int i = 0; i < TableSize; i++)
            {
                var value = (float)i / TableSize;
                // Adjust to increase color change between lower values in infrared images

                var alpha = (float)Math.Pow(1 - value, 12);
                lut[i] = ColorRampInterpolation(alpha);
            }

            return lut;
        }



        /// <summary>
        /// Initializes pseudo-color look up table for depth pixels
        /// </summary>
        private static uint[] InitializePseudoColorLut()
        {
            uint[] lut = new uint[TableSize];
            for (int i = 0; i < TableSize; i++)
            {
                lut[i] = ColorRampInterpolation((float)i / TableSize);
            }

            return lut;
        }



        /// <summary>
        /// Maps a float value to a pseudo-color pixel
        /// </summary>
        private static uint ColorRampInterpolation(float value)
        {
            // Map value to surrounding indexes on the color ramp
            int rampSteps = ColorRamp.Length - 1;
            float scaled = value * rampSteps;
            int integer = (int)scaled;
            int index =
                integer < 0 ? 0 :
                integer >= rampSteps - 1 ? rampSteps - 1 :
                integer;

            Color prev = ColorRamp[index];
            Color next = ColorRamp[index + 1];

            // Set color based on ratio of closeness between the surrounding colors
            uint alpha = (uint)((scaled - integer) * 255);
            uint beta = 255 - alpha;
            return
                ((prev.A * beta + next.A * alpha) / 255) << 24 | // Alpha
                ((prev.R * beta + next.R * alpha) / 255) << 16 | // Red
                ((prev.G * beta + next.G * alpha) / 255) << 8 |  // Green
                ((prev.B * beta + next.B * alpha) / 255);        // Blue
        }


        /// <summary>
        /// Maps a value in [0, 1] to a pseudo RGBA color.
        /// </summary>
        /// <param name="value">Input value between [0, 1].</param>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]

        private static uint PseudoColor(float value)
        {
            int index = (int)(value * TableSize);
            index = index < 0 ? 0 : index > TableSize - 1 ? TableSize - 1 : index;
            return PseudoColorTable[index];
        }

        #endregion

        /// <summary>
        /// Maps each pixel in a scanline from a 16 bit depth value to a pseudo-color pixel.
        /// </summary>
        /// <param name="pixelWidth">Width of the input scanline, in pixels.</param>
        /// <param name="inputRowBytes">Pointer to the start of the input scanline.</param>
        /// <param name="outputRowBytes">Pointer to the start of the output scanline.</param>
        /// <param name="depthScale">Physical distance that corresponds to one unit in the input scanline.</param>
        /// <param name="minReliableDepth">Shortest distance at which the sensor can provide reliable measurements.</param>
        /// <param name="maxReliableDepth">Furthest distance at which the sensor can provide reliable measurements.</param>

        public static unsafe void PseudoColorForDepth(int pixelWidth, byte* inputRowBytes, byte* outputRowBytes, float depthScale, float minReliableDepth, float maxReliableDepth)
        {
            // Visualize space in front of your desktop.
            float minInMeters = minReliableDepth * depthScale;
            float maxInMeters = maxReliableDepth * depthScale;
            float one_min = 1.0f / minInMeters;
            float range = 1.0f / maxInMeters - one_min;

            ushort* inputRow = (ushort*)inputRowBytes;
            uint* outputRow = (uint*)outputRowBytes;

            for (int x = 0; x < pixelWidth; x++)
            {
                var depth = inputRow[x] * depthScale;

                if (depth == 0)
                {
                    // Map invalid depth values to transparent pixels.
                    // This happens when depth information cannot be calculated, e.g. when objects are too close.
                    outputRow[x] = 0;
                }
                else
                {
                    var alpha = (1.0f / depth - one_min) / range;
                    outputRow[x] = PseudoColor(alpha * alpha);
                }
            }
        }



        /// <summary>
        /// Maps each pixel in a scanline from a 8 bit infrared value to a pseudo-color pixel.
        /// </summary>
        /// /// <param name="pixelWidth">Width of the input scanline, in pixels.</param>
        /// <param name="inputRowBytes">Pointer to the start of the input scanline.</param>
        /// <param name="outputRowBytes">Pointer to the start of the output scanline.</param>

        public static unsafe void PseudoColorFor8BitInfrared(
            int pixelWidth, byte* inputRowBytes, byte* outputRowBytes)
        {
            byte* inputRow = inputRowBytes;
            uint* outputRow = (uint*)outputRowBytes;

            for (int x = 0; x < pixelWidth; x++)
            {
                outputRow[x] = InfraredColor(inputRow[x] / (float)Byte.MaxValue);
            }
        }

        /// <summary>
        /// Maps each pixel in a scanline from a 16 bit infrared value to a pseudo-color pixel.
        /// </summary>
        /// <param name="pixelWidth">Width of the input scanline.</param>
        /// <param name="inputRowBytes">Pointer to the start of the input scanline.</param>
        /// <param name="outputRowBytes">Pointer to the start of the output scanline.</param>

        public static unsafe void PseudoColorFor16BitInfrared(int pixelWidth, byte* inputRowBytes, byte* outputRowBytes)
        {
            ushort* inputRow = (ushort*)inputRowBytes;
            uint* outputRow = (uint*)outputRowBytes;

            for (int x = 0; x < pixelWidth; x++)
            {
                outputRow[x] = InfraredColor(inputRow[x] / (float)UInt16.MaxValue);
            }
        }
    }


    // Displays the provided softwareBitmap in a XAML image control.
    public void PresentSoftwareBitmap(SoftwareBitmap softwareBitmap)
    {
        if (softwareBitmap != null)
        {
            // Swap the processed frame to _backBuffer and trigger UI thread to render it
            softwareBitmap = Interlocked.Exchange(ref _backBuffer, softwareBitmap);

            // UI thread always reset _backBuffer before using it.  Unused bitmap should be disposed.
            softwareBitmap?.Dispose();

            // Changes to xaml ImageElement must happen in UI thread through Dispatcher
            var task = _imageElement.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
                async () =>
                {
                    // Don't let two copies of this task run at the same time.
                    if (_taskRunning)
                    {
                        return;
                    }
                    _taskRunning = true;

                    // Keep draining frames from the backbuffer until the backbuffer is empty.
                    SoftwareBitmap latestBitmap;
                    while ((latestBitmap = Interlocked.Exchange(ref _backBuffer, null)) != null)
                    {
                        var imageSource = (SoftwareBitmapSource)_imageElement.Source;
                        await imageSource.SetBitmapAsync(latestBitmap);
                        latestBitmap.Dispose();
                    }

                    _taskRunning = false;
                });
        }
    }
}

这是输出图像,我在转换问题和灰度处理后得到了: Output image

至于VS版本 - Visual Studio Enterprise 2017,版本15.6.1(准确地说)。再一次,提前感谢您的帮助。

0 个答案:

没有答案