重用生成器表达式

时间:2018-03-23 10:24:18

标签: python generator generator-expression

生成器表达式是一个非常有用的工具,与列表推导相比具有巨大的优势,即它不为新数组分配内存。

我面对生成器表达式的问题,最终使我最终编写列表推导,是我只能使用这样一个生成器:

>>> names = ['John', 'George', 'Paul', 'Ringo']
>>> has_o = (name for name in names if 'o' in name)
>>> for name in has_o:
...   print(name.upper())
...
JOHN
GEORGE
RINGO
>>> for name in has_o:
...   print(name.lower())
...
>>>

上面的代码说明了生成器表达式如何只能使用一次。这当然是因为生成器表达式返回生成器的实例,而不是定义可以反复实例化的生成器函数。

有没有办法在每次使用时克隆生成器,以使其可重用,或者使生成器表达式语法返回生成器函数而不是单个实例?

3 个答案:

答案 0 :(得分:7)

将其设为lambda

has_o = lambda names: (name for name in names if 'o' in name)
for name in has_o(["hello","rrrrr"]):
   print(name.upper())
for name in has_o(["hello","rrrrr"]):
   print(name.upper())

lambda是一个单行,每次返回一个新生成器。在这里,我选择能够传递输入列表,但如果它已修复,您甚至不需要参数:

names = ["hello","rrrrr"]
has_o = lambda: (name for name in names if 'o' in name)
for name in has_o():
   print(name.upper())
for name in has_o():
   print(name.upper())

在最后一种情况下,请注意以下事实:如果names更改或重新分配,lambda将使用新的names对象。您可以使用默认值技巧修复名称重新分配:

has_o = lambda lst=names: (name for name in lst if 'o' in name)

并且您可以使用默认的值和复制技巧修复names的后续修改(当您认为您的第一个目标是避免创建列表时,这不是非常有用的):)< / p>

has_o = lambda lst=names[:]: (name for name in lst if 'o' in name)

(现在请你选择:))

答案 1 :(得分:2)

itertools.tee允许您从一个iterable中创建几个迭代器:

from itertools import tee

names = ['John', 'George', 'Paul', 'Ringo']
has_o_1, has_o_2 = tee((name for name in names if 'o' in name), 2)
print('iterable 1')
for name in has_o_1:
    print(name.upper())
print('iterable 2')
for name in has_o_2:
    print(name.upper())

输出:

iterable 1
JOHN
GEORGE
RINGO
iterable 2
JOHN
GEORGE
RINGO

答案 2 :(得分:0)

好的,这是使您的迭代器可重用的代码。 它会在每次迭代后自动重置自身,因此您不必担心任何事情。 好吧,它是多么高效,有两个方法调用(一个用于tee()的next()继而又调用迭代器本身的next()),以及一个try-except块,它在原始迭代器的顶部额外存在。 您必须确定微小的速度损失是否可以,还是使用lambda来重构迭代器,如其他答案所示。



from itertools import tee

class _ReusableIter:
    """
    This class creates a generator object that wraps another generator and makes it reusable
    again after each iteration is finished.
    It makes two "copies" (using tee()) of an original iterator and iterates over the first one.
    The second "copy" is saved for later use.
    After first iteration reaches its end, it makes two "copies" of the saved "copy", and
    the previous iterator is swapped with the new first "copy" which is iterated over while the second "copy" (a "copy" of the old "copy") waits for the
    end of a new iteration, and so on.
    After each iteration, the _ReusableIter() will be ready to be iterated over again.

    If you layer a _ReusableIter() over another _ReusableIter(), the result can lead you into an indefinite loop,
    or provoke some other unpredictable behaviours.
    This is caused by later explained problem with copying instances of _ReusableIter() with tee().
    Use ReusableIterator() factory function to initiate the object.
    It will prevent you from making a new layer over an already _ReusableIter()
    and return that object instead.

    If you use the _ReusableIter() inside nested loops the first loop
    will get the first element, the second the second, and the last nested loop will
    loop over the rest, then as the last loop is done, the iterator will be reset and
    you will enter the infinite loop. So avoid doing that if the mentioned behaviour is not desired.

    It makes no real sense to copy the _ReusableIter() using tee(), but if you think of doing it for some reason, don't.
    tee() will not do a good job and the original iterator will not really be copied.
    What you will get instead is an extra layer over THE SAME _ReusableIter() for every copy returned.

    TODO: A little speed improvement can be achieved here by implementing tee()'s algorithm directly into _ReusableIter()
    and dump the tee() completely.
    """
    def __init__ (self, iterator):
        self.iterator, self.copy = tee(iterator)
        self._next = self.iterator.next

    def reset (self):
        self.iterator, self.copy = tee(self.copy)
        self._next = self.iterator.next

    def next (self):
        try:
            return self._next()
        except StopIteration:
            self.reset()
            raise

    def __iter__ (self):
        return self

def ReusableIter (iterator):
    if isinstance(iterator, _ReusableIter):
        return iterator
    return _ReusableIter(iterator)

Usage:
>>> names = ['John', 'George', 'Paul', 'Ringo']
>>> has_o = ReusableIter(name for name in names if 'o' in name)
>>> for name in has_o:
>>>     print name
John
George
Ringo
>>> # And just use it again:
>>> for name in has_o:
>>>     print name
John
George
Ringo
>>>